国产欧美日韩在线观看一区二区,欧美乱码精品一区二区三区,国产粉嫩高中无套进入,中文在线天堂网www

教案

初中數學教案

時間:2023-10-07 11:51:47 教案 我要投稿

初中數學教案

  作為一無名無私奉獻的教育工作者,常常要寫一份優秀的教案,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。我們該怎么去寫教案呢?下面是小編整理的初中數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數學教案

初中數學教案1

  教學目標

  1.理解二元一次方程及二元一次方程的解的概念;

  2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;

  3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;

  4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

  教學重點、難點

  重點:二元一次方程的意義及二元一次方程的解的概念.

  難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程.

  教學過程

  1.情景導入:

  新聞鏈接:桐鄉70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.

  2.新課教學:

  引導學生觀察方程80a+150b=902880與一元一次方程有異同?

  得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程.

  3.合作學習:

  給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換.(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法.提問:給出x的值,計算y的值時,y的'系數為多少時,計算y最為簡便?

  4.課堂練習:

  1)已知:5xm-2yn=4是二元一次方程,則m+n=;

  2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_

  5.課堂總結:

  (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

  (2)二元一次方程解的不定性和相關性;

  (3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式.

  作業布置

  本章的課后的方程式鞏固提高練習。

初中數學教案2

  學習目標

  1.理解平行線的意義兩條直線的兩種位置關系;

  2.理解并掌握平行公理及其推論的內容;

  3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;

  學習重點

  探索和掌握平行公理及其推論.

  學習難點

  對平行線本質屬性的理解,用幾何語言描述圖形的性質

  一、學習過程:預習提問

  兩條直線相交有幾個交點?

  平面內兩條直線的.位置關系除相交外,還有哪些呢?

  (一)畫平行線

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據此方法練習畫平行線:

  已知:直線a,點B,點C.

  (1)過點B畫直線a的平行線,能畫幾條?

  (2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

  (二)平行公理及推論

  1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

  ②過點C畫直線a的平行線,能畫 條;

  ③你畫的直線有什么位置關系? 。

  ②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

  (一)選擇題:

  1、下列推理正確的是 ( )

  A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

  C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

  2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )

  A.0個 B.1個 C.2個 D.3個

  (二)填空題:

  1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

  2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

  (1)L1與L2 沒有公共點,則 L1與L2 ;

  (2)L1與L2有且只有一個公共點,則L1與L2 ;

  (3)L1與L2有兩個公共點,則L1與L2 。

  3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

  4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。

  三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初中數學教案3

  學情分析:

  高三(7)是我校理科重點班,該班的學生具有良好的數學功底,處于復習階段的他們目標更明確,學習熱情高,課堂投入,思考積極。就本節開課的內容而言,學生已掌握了“對稱問題”本質屬性,能夠從圖象和表達式上準確地理解對稱問題。但也只是停留在就事論事的基礎上,對問題的抽象、歸納概括,引申拓展還缺乏一定的能力和意識。對于周期概念,學生沒有什么的問題。

  教材分析:

  1.對稱問題是高中數學中比較難的問題,學生一般由于問題的抽象性,同時由于這中間存在關于點對稱和關于直線對稱這兩類問題,而它們的數學表達式又是那么相似,學生如果沒有真正理解很難分清誰是誰非。而且在高考的問題中經常會碰到,因此有必要加以澄清和深化理解。

  2.對稱問題和周期問題也存在一定的聯系,本節可以通過足夠的條件闡明這一聯系的實質。

  教學目標:

  理解一個函數存在兩次對稱(可能關于兩個點對稱或兩條直線對稱或一個點加上一個對直線)時,如何判斷函數具有周期性。

  重點和難點

  具有兩次對稱問題的抽象函數具有周期性,而且要求求出周期。

  教學方法:

  從簡單到復雜,以啟發思想為指導,精講重思,暴露學生的思維,使學生整節課都處于思考之中。

  教學程序:

  一、引入

  師:當一個人站在一面鏡子前,面對鏡子一定的距離,那么在鏡中的像有什么特征?

  生:(物理常識)人和像關于鏡子對稱。

  師:現在在此人的身后再放一面鏡子,鏡面對著人的背面,此時在此人面前的鏡子中的像又是什么?

  生:如果鏡子夠大的話,里面將是無數個排列的人。

  師:道理何在?

  生:首先是人在前面鏡中的像連同人一起要在后面鏡中成像,這一像反過來連同人又在前面鏡中成像,這樣反反復復,就得到了無數個人像,而且具有周期性(即圖象重復出現)。

  師:如果將人看成一段函數,將鏡子看成一條對稱軸,那么整個函數的圖象應該是怎樣的(圖象具有什么特征)。

  引入課題:對稱+對稱=?

  二、探究

  回顧:關于圖象的對稱問題分為兩類:一類是關于點對稱,另一類是關于直線對稱,今天我們來研究一般的函數對稱問題,我們從函數表達式來研究,對于直線對稱:若f(x)關于x=a對稱,則有f(x)=f(2a-x)或f(a+x)=f(a-x);對于點對稱:f(x)關于(a,0)對稱,則有f(x)=-(2a-x)或f(a+x)=-f(a-x)。

  對于奇函數[f(x)=-f(-x)]和偶函數[f(x)=f(-x)],則是這兩類對稱中的特例。

  延伸:若是f(a+x)=f(b+x),則函數關于什么對稱(關于直線x=(a+b)/2對稱)

  提問:請同學們找幾個關于直線x=a對稱的函數的表達式?

  生:f(4a-x)=f(6a+x)

  下面研究當函數具有兩次對稱時,結果有什么特征?

  問題設計:

  ①函數f(x)

  (1)是偶函數

  (2)關于x=a對稱

  分析:由條件(2),可得f(a+x)=f(a-x),又由條件(1),所以f(x+a)=f(x-a)。

  (以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定義f(x)=f(T+x),所以f(x)是以|2a|為周期的函數

  ②函數f(x)

  (1)是奇函數

  (2)關于x=a對稱

  分析:由條件(2),可得f(x)=f(2a-x)又由條件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函數f(x)是以|4a|為周期的函數,

  以此類推,

  ③函數f(x)滿足

  (1)是偶函數

  (2)關于(a,0)對稱

  ④函數f(x)滿足

  (1)是奇函數

  (2)關于(a,0)對稱

  ⑤函數f(x)滿足

  (1)關于x=b對稱

  (2)關于x=a對稱

  ⑥函數f(x)滿足

  (1)關于(a,0)對稱

  (2)關于(b,0)對稱

  ⑦函數f(x)滿足

  (1)關于x=a對稱

  (2)關于(b,0)對稱

  (師生共同完成)

  學生練習:見復習參考書

  評教:

  教材處理恰當

  1.前面的課堂教學中已經講了關于圖象平移,伸縮的問題,對于對稱問題在前面也分析了關于含絕對值的函數圖象問題(y=|f(x)|,y=f(|x|))。

  2.今天這堂課分析非絕對值的對稱問題,主要是關于點對稱和直線對稱的問題。

  3.下一節殷老師構思,將一個函數的對稱變成兩個函數的對稱問題,即如:函數f(x)和函數f(-x)的關系;函數f(x)和函數f(2a-x)的關系;函數-f(x)和函數f(2a+x)的關系,即對照這堂課的內容,將一個函數變成兩個函數,再尋找二者關系,以便通過其中一個函數來解決另一個函數問題。如:已知函數-f(x)的圖象,畫出函數f(2a+x)的圖象及分析其性質。

  (點評:對于教學任務的分析是一個教師的教學水平的重要標志,同樣的一個教師對教材的處理各不相同,當然所得的結果也各不相同,我們評一節課好壞,同時也要關注這堂課的前述及后續,只有知道前后的內容,才能把握上課之人想法,教學思路,處理教材的能力,我認為這樣的處理比較有邏輯性,能夠幫學生梳理知識,使學生對知識的結構比較清晰,符合建構主義觀點。這對高考復習內容較多的情況下更容易幫助學生的理解,體現上課老師對教材具有較高的處理水平。)

  引入貼近生活

  數學知識通常被學生認為是最沒用的,枯燥乏味的`,原因是學生在實際生活中的問題很少能夠和數學聯系起來,而通常這樣的聯系確定很難尋找,現在的新教材就加強了這一方面的聯系,這堂課殷老師就以是實際生活中常見的照鏡子一事引入,這里我覺點有兩個地方比較不錯:

  (1)將數學知識和實際聯系起來,因此說聯系還是有的,主要我們沒有仔細體會,沒有這種思維習慣,這樣有聯系的問題學生就感興趣,自然投入更多了;

  (2)更為重要的是,這個引入不但引出了主題,還成功地解決了難點(抽象思維能力),如果是直接給出問題,學生可能不會想到結論是什么,但是由鏡子引入,學生就很容易理解為什么函數具有周期性,為接下來從函數表達式上來分析埋下了墊腳石。對于問題情境的設置恰當與否,決定了能否激發學生的求知欲望,能否積極主動地參與到課堂教學中。

  可改進之處:對于照鏡子問題,在實際生活同時用兩面鏡子,可能不多,因此學生要推斷也只憑想象再結合物理知識,可能有學生想出來,那么他對這一問題的理解就憑老師的講解,還是存有疑惑,如果能現實操作,理解會更深,當然不可能真的取來兩面大鏡子,我們可借助于“幾何畫板”數學教學軟件,它對于對稱問題,操作簡單,下面是本人做的圖片:

  (三)問題設計巧妙

  函數f(x)滿足

  (1)是偶函數

  (2)關于x=a對稱

  ②函數f(x)滿足

  (1)是奇函數

  (2)關于x=a對稱

  ③函數f(x)滿足

  (1)是偶函數

  (2)關于(a,0)對稱

  ④函數f(x)滿足

  (1)是奇函數

  (2)關于(a,0)對稱

  ⑤函數f(x)滿足

  (1)關于x=b對稱

  (2)關于x=a對稱

  ⑥函數f(x)滿足

  (1)關于(a,0)對稱

  (2)關于(b,0)對稱

  ⑦函數f(x)滿足

  (1)關于x=a對稱

  (2)關于(b,0)對稱

  題組、變式訓練是提高學生思維能力,分析問題解決問題能力的常用方法

  (1)學生能通過辨析達到對問題真正理解,對于突破難點起關鍵作用。

  (2)通過一連串的結論,使學生在以后拿到類似的問題,會引起重視,究竟是其中哪一種。

  同時這里的問題設計遵循了由易到難,特殊到一般的過程,這和學生的思維認識規律相符合。

  可改進之處:對于這類問題,當然有必要讓學生理解,對于一連串問題的理解經過思考和老師的分析是可以理解但是學生的抽象思維能力還是有待于提高的,到最后可能在頭腦里的印象還是比較模糊了,誰是誰非。⑤⑥⑦三個例子均可讓學生自己來演練,以便讓每個學生有獨立思考的機會。以提高學生獨立解決問題的能力,和真正檢測學生對剛才問題的理解程度。

  (四)善于捕捉歸納

  在教學中處處留心,總能發現點什么,對于平時的練習也是一樣,通過平時作問題,從問題中發現規律,進行提練、歸納。這節課的問題設計來自殷老師平時的留心觀察,這一點確實提醒我們這些年青教師,要善于觀察、思考、發現問題,總結規律。

  (五)分析透徹易懂

  課堂45分鐘的效率如何是學生學好每一門課程的關鍵,教師分析有沒有到位,直接影響著學生的聽課效率,講得多并不是好事,講少了怕學生聽不懂,這是很多新教師關心的問題,老教師上課時知道講到哪就夠了,知道學生在哪兒可能有疑惑,就重點講解,有些地方一帶而過,這節課很多地方分析的非常清楚,比如在講解,關于直線對稱和點對稱時

  求表達式,他這樣講解f(x)關于x=a對稱,為什么會f(x)=f(2a-x)

  (1)兩點關于x軸對稱,縱坐標(函數值y)沒變,所以f()=f()(f()表示函數值)

  (2)橫坐標原來為x,對稱后變了,由中點坐標公式得,x1=2a-x,所以f(x)=f(2a-x),講解關于點(a,0)對稱時求表達式,由于縱坐標變為原來相反數,所以f()=一f(),同樣橫坐標也可以由中點公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。

  (六)暴露學生思維

  本節課應該說學生的思維還是比較活躍的,在老師的幫助下,學生表現比較積極、投入,課堂氣氛活躍,學生能夠根據自己的理解提出方案,對于問題的解答反映還是比較快的,但是也不排除有個別學生可能由于問題的抽象性,對于問題的本質缺乏充分的認識及自身理解水平的問題,對于問題的下一步是什么,如何思考沒有想法。

  可改進建議:由于課堂容量較大,教師可能考慮到時間的問題,對于后幾個問題沒有讓學生有充分的時間思考,有些思維慢,或理解不夠的學生可能跟不上,在下面沒有反應,建議教師事先出張學案,將要研究的問題羅列出一張提綱,讓學生在課前去思考,這樣上課的聽課效率可能會更好。

初中數學教案4

  教學目的

  1.通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數學模型的作用。

  2.使學生會列一元一次方程解決一些簡單的應用題。

  3.會判斷一個數是不是某個方程的解。

  重點、難點

  1.重點:會列一元一次方程解決一些簡單的應用題。

  2.難點:弄清題意,找出“相等關系”。

  教學過程

  一、復習提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設小紅能買到工本筆記本,那么根據題意,得1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授

  問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)

  算術法:(328-64)÷44=264÷44=6(輛)

  列方程:設需要租用x輛客車,可得44x+64=328

  解這個方程,就能得到所求的結果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發現同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的'方法得出方程的解,這也是一種基本的數學思想方法。也可以據此檢驗一下一個數是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發現了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數,該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習

  教科書第3頁練習1、2。

  四、小結

  本節課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。

  五、作業

  教科書第3頁,習題6.1第1、3題。

初中數學教案5

  一、教學目標

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質和,并能靈活應用;

  4、通過二次根式的計算培養學生的'邏輯思維能力;

  5、通過二次根式性質和的介紹滲透對稱性、規律性的數學美。

  二、教學重點和難點

  重點:

  (1)二次根的意義;

  (2)二次根式中字母的.取值范圍。

  難點:確定二次根式中字母的取值范圍。

  三、教學方法

  啟發式、講練結合。

  四、教學過程

  (一)復習提問

  1、什么叫平方根、算術平方根?

  2、說出下列各式的意義,并計算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學們討論論應注意的問題,引導學生總結:

  (1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

  (2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

  例1當a為實數時,下列各式中哪些是二次根式?

  例2 x是怎樣的實數時,式子在實數范圍有意義?

  解:略。

  說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。

  例3當字母取何值時,下列各式為二次根式:

  分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。

  解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。

  (2)—3x≥0,x≤0,即x≤0時,是二次根式。

  (3),且x≠0,∴x>0,當x>0時,是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。

  解:(1)由2a+3≥0,得。

  (2)由,得3a—1>0,解得。

  (3)由于x取任何實數時都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。

  (4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數學教案6

  教學目標:

  (1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

  (2)注重學生參與,聯系實際,豐富學生的感性認識,培養學生的良好的學習習慣

  重點難點:

  能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

  教學過程:

  一、試一試

  1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發現,當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數,試寫出這個函數的關系式,

  對于1.,可讓學生根據表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數據的變化情況,提出問題:(1)從所填表格中,你能發現什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學生分組討論、交流,然后各組派代表發表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數關系式.

  二、提出問題

  某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的.辦法來提高利潤,經過市場調查,發現這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學生思考并回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關系?

  [利潤=(售價-進價)×銷售量]

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷

  售約多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  [x的值不能任意取,其范圍是0≤x≤2]

  5.若設該商品每天的利潤為y元,求y與x的函數關系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  將函數關系式y=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x(0<x<10)……………………………(1) 將函數關系式y=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導學生觀察函數關系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數關系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)

  (3)函數關系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點? 讓學生討論、交流,發表意見,歸結為:自變量x為何值時,函數y取得最大值。

  2.二次函數定義:形如y=ax2+bx+c (a、b、、c是常數,a≠0)的函數叫做x的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.

  四、課堂練習

  1.(口答)下列函數中,哪些是二次函數?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結

  1.請敘述二次函數的定義.

  2,許多實際問題可以轉化為二次函數來解決,請你聯系生活實際,編一道二次函數應用題,并寫出函數關系式。

  六、作業:略

初中數學教案7

  一、教材的地位與作用

  《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節。在此之前學生已經學習了一元一次方程,這為本節的學習起了鋪墊的作用。本節內容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。

  二、教學目標

  (一)知識與技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

  (二)數學思考:

  體會學習二元一次方程的必要性,學會獨立思考,體會數學的轉化思想和主元思想。

  (三)問題解決:

  初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

  (四)情感態度:

  培養學生發現意識和能力,使其具有強烈的好奇心和求知欲。

  三、教學重點與難點

  教學重點:二元一次方程及其解的概念。

  教學難點:二元一次方程的概念里“含未知數的項的次數”的理解;把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。

  四、教法與學法分析

  教法:情境教學法、比較教學法、閱讀教學法。

  學法:閱讀、比較、探究的學習方式。

  五、教學過程

  1.創設情境,引入新課

  從學生熟悉的姚明受傷事件引入。

  師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。

  (1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?

  (2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?

  設姚明投進了x個兩分球,罰進了y個球,可列出方程。

  (3)在雄鹿隊與火箭隊的比賽中易建聯全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?

  設易建聯投進了x個兩分球,y個三分球,可列出方程。

  師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?

  從而揭示課題。

  (設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數學模型,從而回顧一元一次方程的.概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數學來源于生活,又應用于生活,通過創設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態投入學習,而且“會學”“樂學”。)

  2.探索交流,汲取新知

  概念思辨,歸納二元一次方程的特征

  師:那到底什么叫二元一次方程?(學生思考后回答)

  師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區別嗎?(同學們思考后回答)

  師:根據概念,你覺得二元一次方程應具備哪幾個特征?

  活動:你自己構造一個二元一次方程。

  快速判斷:下列式子中哪些是二元一次方程?

  ①x2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

  (設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數”形象化。)

  二元一次方程解的概念

  師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯可能投中幾個兩分球,幾個三分球嗎?

  師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)

  使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質:使方程左右兩邊相等的一對未知數的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數的取值”的真正含義。)

  二元一次方程解的不唯一性

  對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?

  (設計意圖:設計此環節,目的有三個:首先,是讓學生學會如何檢驗一對未知數的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數的取值,就可以代入方程算出另一個未知數的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,(1)當x=2時,求所對應的y的值;

  (2)取一個你自己喜歡的數作為x的值,求所對應的y的值;

  (3)用含x的代數式表示y;

  (4)用含y的代數式表示x;

  (5)當x=負2,0時,所對應的y的值是多少?

  (6)寫出方程3x+2y=10的三個解.

  (設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程,實質是解一個關于y的一元一次方程,滲透數學的主元思想。以此突破本節課的難點。)

  大顯身手:

  課內練習第2題

  梳理知識,課堂升華

  本節課你有收獲嗎?能和大家說說你的感想嗎?

  3.作業布置

  必做題:書本作業題1、2、3、4。

  選做題:書本作業題5、6。

  設計說明

  本節授課內容屬于概念課教學。數學學科的內容有其固有的組成規律和邏輯結構,它總是由一些最基本的數學概念作為核心和邏輯起點,形成系統的數學知識,所以數學概念是數學課程的核心。只有真正理解數學概念,才能理解數學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發現不同點,進而理解“含有未知數的項的次數都是一次”這句話的內涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數的取值,從而讓學生產生有后續學習的愿望。

  在講授用含一個未知數的代數式表示另一個未知數的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數的取值,代入原方程求另一個未知數的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數,那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數的代數式表示另一個未知數”在求值過程中的簡潔性,強化這種代數形式。另外,在引導學生推導“用含一個未知數的代數式表示另一個未知數”的過程中,滲透數學的主元思想和轉化思想。

初中數學教案8

  一、教學目標:

  1.知識目標:

  ①能準確理解絕對值的幾何意義和代數意義。

  ②能準確熟練地求一個有理數的絕對值。

  ③使學生知道絕對值是一個非負數,能更深刻地理解相反數的概念。

  2.能力目標:

  ①初步培養學生觀察、分析、歸納和概括的思維能力。

  ②初步培養學生由抽象到具體再到抽象的思維能力。

  3.情感目標:

  ①通過向學生滲透數形結合思想和分類討論的思想,讓學生領略到數學的奧妙,從而激起他們的好奇心和求知欲望。

  ②通過課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數學的快樂,從而增強他們的自信心。

  二、教學重點和難點

  教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。

  教學難點:絕對值定義的得出、意義的理解及求一個負數的絕對值。

  三、教學方法

  啟發引導式、討論式和談話法

  四、教學過程

  (一)復習提問

  問題:相反數6與-6在數軸上與原點的距離各是多少?兩個相反數在數軸上的點有什么特征?

  (二)新授

  1.引入

  結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。

  2.數a的絕對值的意義

  ①幾何意義

  一個數a的絕對值就是數軸上表示數a的.點到原點的距離。數a的絕對值記作|a|.

  舉例說明數a的絕對值的幾何意義。(按教材P63的倒數第二段進行講解。)

  強調:表示0的點與原點的距離是0,所以|0|=0.

  指出:表示“距離”的數是非負數,所以絕對值是一個非負數。

  ②代數意義

  把有理數分成正數、零、負數,根據絕對值的幾何意義可以得出絕對值的代數意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0.

  用字母a表示數,則絕對值的代數意義可以表示為:

  指出:絕對值的代數定義可以作為求一個數的絕對值的方法。

  3.例題精講

  例1.求8,-8,,-的絕對值。

  按教材方法講解。

  例2.計算:|2.5|+|-3|-|-3|.

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一個數的絕對值等于2,求這個數。

  解:∵|2|=2,|-2|=2

  ∴這個數是2或-2.

  五、鞏固練習

  練習一:教材P641、2,P66習題2.4A組1、2.

  練習二:

  1.絕對值小于4的整數是____.

  2.絕對值最小的數是____.

  3.已知|2x-1|+|y-2|=0,求代數式3x2y的值。

  六、歸納小結

  本節課從幾何與代數兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數的絕對值都是非負數。絕對值的代數意義可以作為求一個數的絕對值的方法。

  七、布置作業

  教材P66習題2.4A組3、4、5.

初中數學教案9

  八、 板書 設計

  6.2? 不等式的解集

  一、1.不等式的`解集:一般地,一個含有未知數的不等式的所有的解組成這個不等式的解的集合,簡稱不等式的解集.

  2.解不等式:求不等式解的過程

  二、在數軸上表示不等式的解集

  1.    2.

  三、注意:(1)“ · ”與“ °”;(2)“左邊部分”與“右邊部分”.

初中數學教案10

  一、教材分析

  本節內容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數學》(供天津用)八年級下冊第十章整式第一節整式加減第2小節整式的加減。

  二、設計思想

  本節內容是學生掌握了“整式”有關概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數知識奠定基礎,是“數”向“式”的正式過度,具有十分重要地位。

  八年級學生已具有了較強的數的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結合教材,立足讓每個學生都有發展的宗旨,我采用合作探究的'學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養學生化簡意識,提升數學運算技能而且讓學生深刻體會到數學是解決實際問題的重要工具,增強應用數學的意識。

  三、教學目標:

  (一)知識技能目標:

  1、理解同類項的含義,并能辨別同類項。

  2、掌握合并同類項的方法,熟練的合并同類項。

  3、掌握整式加減運算的方法,熟練進行運算。

  (二)過程方法目標:

  1、通過探究同類項定義、合并同類項的方法的活動,培養學生觀察、歸納、探究的能力。

  2、通過合并同類項、整式加減運算的練習活動,提高學生運算技能,提升運算的準確率培養學生化簡意識,發展學生的抽象概括能力。

  3、通過研究引例、探究例1的活動,發展學生的形象思維,初步培養學生的符號感。

  (三)情感價值目標:

  1、通過交流協商、分組探究,培養學生合作交流的意識和敢于探索未知問題的精神。

  2、通過學習活動培養學生科學、嚴謹的學習態度。

  四、教學重、難點:

  合并同類項

  五、教學關鍵:

  同類項的概念

  六、教學準備:

  教師:

  1、篩選數學題目,精心設置問題情境。

  2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

  3、設計多媒體教學課件。(要凸顯①單項式中系數、字母、指數的特征②長方體紙盒立體圖、展開圖。)

  學生:

  1、復習有關單項式的概念、有理數四則運算及去括號的法則)

  2、每小組制作大小不等的兩個長方體紙盒模型。

初中數學教案11

  教學目標:

  1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現實世界有效模型的意義。

  2、過程與方法:通過觀察,歸納一元一次方程的概念。

  3、情感與態度:體驗數學與日常生活密切相關,認識到許多實際問題可以用數學方法解決。

  教學重點:歸納一元次方程的概念

  教學難點:感受方程作為刻畫現實世界有效模型的意義.

  教學過程:

  一、情景導入:

  我能猜出你們的年齡,相信嗎?

  只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.

  問:你的年齡乘以2加3等于多少?

  學生說出結果,教師猜測年齡,并問:你們知道我是怎么做的嗎?

  學生討論并回答

  二、知識探究:

  1、方程的教學(投影演示)

  小彬和小明也在進行猜年齡游戲,我們來看一看。

  找出這道題中的`等量關系,列出方程.

  大家觀察,這兩個式子有什么特點。

  討論并回答:什么是方程?方程有哪些特點?

  2、 判斷下列式子是不是方程?

  (1)X+2=3(是)(2)X+3Y=6(是)

  (3)3M-6(不是)(4)1+2=3(不是)

  (5)X+3>5(不是)(6)Y-12=5(是)

  三、合作交流

  1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)

  情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?

  你能找出題中的等量關系嗎?怎樣列方程?由此題你們想到了些什么?

  情景二:第五次全國人口普查統計數據(20xx年3月28日新華社公布)

  截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數為3611人,比1990年7月1日0時增長了153.94%

  1990年6月底每10萬人中約有多少人具有大學文化程度?情景三:西湖中學的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?

  下面是剛才根據幾道情景題所列的方程,分析下列方程有何共同點?

  2X–5=21

  40+15X=100

  X(1+153.94﹪)=3611

  2[X+(X+12)]=200

  2[Y+(Y–12)]=200

  在一個方程中,只含有一個未知數X(元),并且未知數的指數是1(次),這樣的方程叫一元一次方程。

  問:大家剛才都已經自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?

  生:分組討論,回答列方程的步驟(1)找等量關系(2)設未知數(3)列方程

  四、隨堂練習

  1、投影趣味習題,

  2、做一做

  下面有兩道題,請選做一題。

  (1)、請根據方程2X+3=21自己設計一道有實際背景的應用題。

  (2)、發揮你的想象,用自己的年齡編一道應用題,并列出方程。

  五、課堂小節

  1、這節課你學到了什么?

  2、這節課給你印象最深的是什么?

  六、作業:分組布置

  數學教案-你今年幾歲了搜集整理

初中數學教案12

  活動目標

  1、復習

7的組成,練習用數的組成、分解知識進行7的加減運算。

  2、學習

7的加減,能根據推理列算式,進一步理解交換兩個加數的位置,得數不變的.規律活動準備7以內的數字卡片、課件、幼兒用書第1冊第47頁、鉛筆。

  活動過程

  1、復習7的組成,列出7的分合式。

  (1)拍手對數:教師拍手和幼兒拍手合起來是7下。

  (2)填數活動。給7的組成填上合適的數。

  2、新授7的加減法:

  (1)教師演示課件出題,請幼兒列算式。先列加法,再列減法。

  ①"樹上飛來了1只小鳥,后來又飛來了6只小鳥,請問,現在書上一共有幾只小鳥?"引導幼兒列出加法算式1+6=7。"如果是先飛來了6只小鳥,有飛來了1只小鳥呢?"怎么列算式?6+1=7,讓幼兒發現將加號兩邊的數互換位置以后,總數不變。

  ②引導幼兒根據推理的方法,列出7的第一組減法算式:7—1=6 7—6=1

  (2)請幼兒根據7的分合式,自己探索將7的其它幾組算式列出來,教師指導。

  (3)利用快問快答的形式,反復練習7的加減法運算。

  3、組織幼兒翻開幼兒用書,觀察圖意,填寫正確的數字或算式,鞏固7的加減法。

  活動延伸

  請幼兒回家以后和父母一起練習7的加減法,學習解決生活中的一些數字問題。

初中數學教案13

  【教學目標】

  1進一步認識方程及其解的概念。

  2理解一元一次方程的概念,會根據簡單數量關系列一元一次方程。 3體驗用嘗試、檢驗解一元一次方程的思想與方法。

  【教學重點】

  一元一次方程的概念和解法貫穿整章,因此“一元一次方程的概念”與“嘗試檢驗法”求解是本節教學的重點。

  【教學難點】

  用嘗試、檢驗的方法解一元一次方程的過程比較復雜,是本節教學的難點。

  【學習準備】

  1.下面哪些式子是方程?

  (1)3

  (2)1;

  (2)x31;

  (3)3x5;

  (4)2xy4;

  (5)x31;

  (6)3x14.

  2.方程與等式有什么聯系與區別?

  方程是解決實際問題的一個重要數學模型,需要我們進一步學習研究。

  【課本導學】

  思考一閱讀并解答課本第114頁“合作學習”的三個問題,思考:

  1.列方程就是根據問題中的相等關系,寫出含有未知數的等式。

  (1)原價為50元的衣服,按8折銷售,售價是多少元?原價若為x元呢?

  (2)你能舉例說明你對“物體在水下,水深每增加10米,物體承受的壓力就增加

  (3)張明投進x個,那么“小杰投進的球的個數”可以怎樣表示?“3人一共投進的球數”怎樣表示?

  你是怎么理解“三人平均每人投進14個球”這句話的?

  思考二觀察你所列的方程,這些方程之間有哪些共同的特點?請思考:

  1.你可以從哪些角度對這些方程進行觀察呢?說說你的想法。

  2.具有“合作學習”中所列方程一樣特點的方程叫做一元一次方程,你能說說這個名稱中“元”和“次”的含義嗎?[練習]完成課本第115頁課內練習

  1.『歸納』判斷一個方程是不是一元一次方程應抓住哪幾個關鍵特點?

  思考三閱讀課本第114頁倒數3行至第115頁正文結束,并思考下面的問題:

  1.(1)如果一個數是方程有什么關系?

  (2)如果一個數是方程350應該是多少?

  (3)要判斷一個數是不是方程3m?2?1?m的解,你會怎么做?2.對方程2x12

  14的`解,這個數代入方程的左邊計算得到的值與14 3 1

  x500的解,這個數代入方程的左邊計算得到的值10 2x12

  14進行嘗試求解時,你認為x必須是整數嗎

  x可以取21嗎20呢?x可以取10或者比10還小的值嗎?為什么?說說你的想法。

  [練習]完成課本第115頁課內練習

  2.『歸納』1.檢驗一個數是不是一元一次方程的解的步驟有哪些?

  2.用嘗試檢驗的方法解一元一次方程,你覺得關鍵的步驟有哪些?【盤點收獲】

  【學習檢測】

  1.下列說法正確的是()

  (a)x1是等式(b)x1是方程(c)方程是等式(d)等式是方程

  2.下列式子中,屬于一元一次方程的是()(a)5x 1

  (b)ab8(c)1257(d)5x82x9 3

  3.設某數為x,根據下列條件列出求該數的方程:

  (1)某數加上1,再乘以2,得6.

  (2)某數與7的和的2倍等于10.

  (3)某數的5倍比某數小3.

  4.某校初一年級328名師生乘車外出春游,己有2輛校車可乘坐64人,還需租用44座的客車多少輛?

  設還需租用x輛,則可列出方程44x+64=328.

  (1)寫出一個方程,使它的解是

  2.【作業布置】略

  【課后反思】

  課堂教學總是在“預設”與“生成”間交融進行,如何根據學情做好充分的預設,又根據課堂生成靈活應變,這既能反映教師的專業素養,又能展示教師的教學功底.反芻本課,筆者認為還有以下幾方面值得反思與改進:

  1.忽略課堂“火花”,錯失追問良機

  在交流對方程的共同特征探討的環節,有一個同學直接說出了“一元一次方程”的名稱.【片斷實錄】

  師:討論好了吧.哪個小組先來說說你們所歸納的特點.生8:這些等式都含有未知數的,用x或y來表示.師(板書):嗯,都含有未知數,這個未知數呢,有的地方是x,有的地方是y.還有呢?生8:還有黑板上的所有等式都是一元一次方程.

  師(驚喜):嗯,你都知道了所有的等式都是我們今天接下來要具體研究的一元一次方程,這位同學已經預習了呢.我們看,剛才這位同學歸納了:都含有未知數.那么請同學們看得更仔細一點,未知數在這里具有什么特征呢?

  不難看出,筆者在這里沒有很好地抓住學生的課堂即時生成資源,用一句“嗯,……,這位同學已經預習了呢.”輕輕帶過,仍然拉著學生回到了預設的軌道“……,請同學們看得更仔細一點,未知數在這里具有什么特征呢?”如果當時直接問她“那么請你講講什

初中數學教案14

  一、目的要求

  1、使學生初步理解一次函數與正比例函數的概念。

  2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。

  二、內容分析

  1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。

  3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數、反比例函數的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數?

  2、函數有哪幾種表示方法?

  3、舉出幾個函數的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)

  (2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)

  (3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的'層層設問,最后給出一次函數的定義。

  一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。

  對這個定義,要注意:

  (1)x是變量,k,b是常數;

  (2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)

  由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。

  在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:

  兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  寫成式子是(一定)

  需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。

  其次,要注意引導學生找出一次函數與正比例函數之間的關系:正比例函數是特殊的一次函數。

  課堂練習:

  教科書13、4節練習第1題.

初中數學教案15

  教學建議

  一、知識結構

  二、重點難點分析

  本節教學的重點是同位角、內錯角、同旁內角的概念、難點為在較復雜的圖形中辨認同位角、內錯角、同旁內角、掌握同位角、內錯角、同旁內角的相關概念是進一步學習平行線、四邊形等后續知識的基礎、

  (1)兩條直線被第三條直線所截,構成八個角(簡稱“三線八角”),其中同位角4對,內錯角2對,同旁內角2對、

  (2)準確識別同位角、內錯角、同旁內角的關鍵,是弄清哪兩條直線被哪一條線所截、也就是說,在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線、

  (3)在截線的同旁找同位角和同旁內角,在截線的兩旁找內錯角、要結合圖形,熟記同位角、內錯角、同旁內角的位置特點,比較它們的區別與聯系、

  (4)在復雜的圖形中識別同位角、內錯角、同旁內角時,應當沿著角的邊將圖形補全,或者把多余的線暫時略去,找到三線八角的基本圖形,進而確定這兩個角的位置關系、

  三、教法建議

  1、上節課討論了兩條直線相交以后所形成的四個角,這一節課是進一步討論三條直線相交后所形成的八個角,所以在教課過程,要運用基本圖形結構將所學的知識及其內在聯系向學生展示、

  2、在講三線八角概念時,一定要細致地分析、顧名思義,把握住兩個關鍵的環節,“三條線與一條線”,盡量給出變式的.圖形,讓學生分辨清楚、

  3、這節課雖然不涉及兩條直線平行后被第三條直線所截的問題,但在可能的情況下,將平行線的圖形讓學生見到,對下一步的學習很有好處,例如,平行四形中的內錯角,學生開始接受起來有一定困難,在這一課時中,出現這個基本圖形,為以后學習打下基礎、

  教學設計示例

  一、素質教育目標

  (一)知識教學點

  1、理解同位角、內錯角、同旁內角的概念、

  2、結合圖形識別同位角、內錯角、同旁內角、

  (二)能力訓練點

  1、通過變式圖形的識圖訓練,培養學生的識圖能力、

  2、通過例題口答“為什么”,培養學生的推理能力、

  (三)德育滲透點

  從復雜圖形分解為基本圖形的過程中,滲透化繁為簡,化難為易的化歸思想;從圖形變化過程中,培養學生辯證唯物主義觀點、

  (四)美育滲透點

  通過“三線八角”基本圖形,使學生認識幾何圖形的位置美、

  二、學法引導

  1、教師教法:嘗試指導,討論評價、變式練習、回授、

  2、學生學法:主動思考,相互研討,自我歸納、

  三、重點、難點、疑點及解決辦法

  (一)生點

  同位角、內錯角、同旁內角的概念、

  (二)難點

  在較復雜的圖形中辨認同位角、內錯角、同旁內角、

  (三)疑點

  正確理解新概念、

  (四)解決辦法

  引導學生討論歸納三類角的特征,并以練習加以鞏固、

  四、課時安排

  1課時

  一、教具學具準備

  投影儀、三角板、自制膠片、

  六、師生互動活動設計

  1、通過一組練習創設情境,復習基礎知識,引入新課、

  2、通過學生閱讀書本,教師設問引導,練習鞏固講授新課、

  3、通過師生互答完成課堂小結、

  七、教學步驟

  (一)明確目標

  使學生掌握“三線八角”,并能在圖形中進行辨識、

  (二)整體感知

  以復習舊知創設情境引入課題,以指導閱讀、設計問題、小組討論學習新知,以變式練習鞏固新知、

  (三)教學過程

  創設情境,復習導入

  回答下列問題:

  1、如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關系?

  2、如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關系?

  3、如圖,三條直線 AB 、CD 、EF 交于一點 O ,則圖中有幾對對頂角,有幾對鄰補角?

  4、如圖,三條直線 AB 、CD 、EF 兩兩相交,則圖中有幾對對項角,有幾對鄰補角?

  5、三條直線相交除上述兩種情況外,還有其他相交的情形嗎?

  學生答后,教師出示復合投影片1,在(1、2題的)圖上添加一條直線 CD ,使 CD 與EF相交于某一點(如圖),直線 AB 、CD 都與EF相交或者說兩條直線 AB 、CD 被第三條直線EF所截,這樣圖中就構成八個角,在這八個角中,有公共頂點的兩個角的關系前面已經學過,今天,我們來研究那些沒有公共頂點的兩個角的關系、

  【板書】 2.3同位角、內錯角、同旁內角

  【教法說明】通過復合投影片演示了同位角、內錯角、同旁內角的產生過程,并從演示過程中看到,這些角也是與相交線有關系的角,兩條直線被第三條直線所截,是相交線的又一種情況、認識事物間是發展變化的辯證關系、

  嘗試指導,學習新知

  1、學生自己嘗試學習,閱讀課本第67頁例題前的內容、

  2、設計以下問題,幫助學生正確理解概念、

  (1)同位角:∠4和∠8與截線及兩條被截直線在位置上有什么特點?圖中還有其他同位角嗎?

  (2)內錯角:∠3和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他內錯角嗎?

  (3)同旁內角:∠4和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他同分內角嗎?

  (4)同位角和同分內角在位置上有什么相同點和不同點?

  內錯角和同旁內角在位置上有什么相同點和不同點?

  (5)這三類角的共同特征是什么?

  3、對上述問題以小組為單位展開討論,然后學生間互相評議、

  4、教師對學生討論過程中所發表的意見進行評判,歸納總結、

  在截線的同旁找同位角和同旁內角,在截線的不同旁找內錯角,因此在“三線八角”的圖形中的主線是截線,抓住了截線,再利用圖形結構特征( F 、Z 、U )判斷問題就迎刃而解、

  【教法說明】讓學生自己嘗試學習,可以充分發揮學生的積極性、主動性和創造性,幾個問題的設計目的是深化教學重點,使學生看書更具有針對性,避免盲目性、學生互相評價可以增加討論的深度,教師最后評價可以統一學生的觀點,學生在議議評評的過程中明理、增智,培養了能力、

  投影顯示(投影片2)

  例題?如圖,直線DE、BC被直線AB所截,(1)∠l與∠2,∠1與∠3,∠1與∠4各是什么關系的角?

  (2)如果∠1=∠4,那么∠1和∠2相等嗎?∠1和∠3互補嗎?為什么?

  [教法說明]例題較簡單,讓學生口答,回答“為什么”只要求學生能用文字語言把主要根據說出來,講明道理即可,不必太規范,等學習證明時再嚴格訓練、

  變式訓練,鞏固新知

  投影顯示(投影片3)

  【教法說明】本題是對簡單變式圖形的訓練,以培養學生的識圖能力,第2題指明第三條直線是 c ,即 a b c 所截,如 c a 被占所截,則結果截然不同,因此遇到題目先分清哪兩條直線被哪一條直線所栽,這是解題的關鍵和前提、

  投影顯示(投影片4)

  【教法說明】本組練習是由同位角、內錯角和同旁內角找出構成它們的“三線”,或是由“三線八角”圖形判斷同位角、內錯角、同旁內角、這兩者都需要進行這樣的三個步驟,一看角的頂點;二看角的邊;三看角的方位、這“三看”又離不開主線——截線的確定,讓學生知道:無論圖形的位置怎樣變動,圖形多么復雜,都要以截線為主線(不變),去解決萬變的圖形,另外遇到較復雜的圖形,也可以從分解圖形入手,把復雜圖形化為若干個基本圖形、如第2題由已知條件結合所求部分,對各個小題分別分解圖形如下:

  投影顯示(投影片5)

  【教法說明】學生在較復雜的圖形中,對找這一類的同位角,找這一類的內錯角,找這一類的同旁內角有一定困難,為此安排本組選擇題,有利于突破難點,第2題中學生對 C 、D 兩個圖形易混淆,要加強對比以便解決教學疑點。第3題讓學生掌握三角形中的3對同旁內角。另外本組練習也為后面的練習打基礎。

  投影顯示(投影片6)

  【教法說明】本組題目是上組題的延伸,再次突破難點,提高學生思維的廣度與深度、學生解決此類題常常因考慮不全面而丟解,要使學生養成全方位多角度考慮問題的習慣,第2題以裁線為標準分類求解,分別把 AB 、BD 、EF 看成是截線找三類角,這樣既不遺漏又不重復、

  (四)總結、擴展

  1、本節研究了一條直線分別和兩條直線相交,所得八個角的位置關系,掌握辨別這些角位置關系的關鍵是分清哪條線是截線,哪些線是被截直線,在截線的同旁找同位角和同旁內角,在截線的不同旁找內錯角,只要抓住三線中的主線——截線,就能正確識別這三類角、

  2、相交直線

  3、教師指著圖中的一條被截直線,問:“這條直線繞著與截線著與截線的交點旋轉,當同位角相等時,兩條被截直線是什么關系?”

  【教法說明】將所學知識進行歸納總結,加強了知識問的聯系,充分體現了所學知識的系統性,最后用是合式小結、可使學生課后自覺地去看預習,尋找答案。系統性,最后用懸念式小結,可使學生課后自覺地去看書預習,尋找答案。

  八、布置作業

  課本第72頁B組第4題、

  【教法說明】課本練習穿插在課堂練習中完成,故只留一道提高題,讓學有余力的同學繼續探究,提高學生思維廣度

  作業答案

  4、答:(1)設 E BC 延長線上的一點,∠ A 與∠ ACD 、∠ ACE 是內錯角,它們分別是由直線 AB 、CD 被直線 AC 截成的和直線 AB 、BE 被直線 AC 截成的。

  (2)∠ B 與∠ DCE 、∠ ACE 是同位有,它們分別是由直線 AB 、CD 被直線 BE 截成的和直線 AB 、AC 被直線 BE 截成的。

【初中數學教案】相關文章:

初中數學教案04-01

初中數學教案優秀03-21

初中數學教案人教版03-20

初中數學教案評語09-02

人教版初中數學教案12-29

人教版初中數學教案大全05-26

初中數學教案14篇03-26

初中數學教案(15篇)02-04

初中數學教案15篇12-30

主站蜘蛛池模板: 青草国产精品久久久久久| 亚洲成av人片不卡无码| 久久综合狠狠综合久久综合88| 亚洲制服另类无码专区| 国产欧美亚洲精品第1页青草| 中文字幕色av一区二区三区| 大屁股熟女一区二区三区| 九九综合九色综合网站| 久久国产美女精品久久| 国产精品无码成人午夜电影| 亚洲中文字幕日本无线码| 大地资源网第二页免费观看| 日韩视频在线观看| 欧美日韩人人模人人爽人人喊| 国产美女狂喷水潮在线播放| 一个人看的www免费视频在线观看| 久久夜色精品国产亚洲av动态图| 国产一区二区三区不卡在线看| 成人艳情一二三区| 好男人社区www在线观看| 久久亚洲色www成爱色| 国产亚洲精品一区二三区| 天天爽夜夜爽人人爽一区二区| 亚洲色婷婷六月亚洲婷婷6月| 亚洲爆乳无码精品aaa片蜜桃| 天天爽夜夜爽人人爽| 无码中文资源在线播放| 国产成人啪精品视频免费视频| 久久天天躁狠狠躁夜夜2020| 亚洲欲色欲色xxxxx在线观看| 妇女bbbbb撒尿正面视频| 各种少妇正面bbw撒尿| 亚洲人精品午夜射精日韩| 少妇高潮a视频| 一本久久伊人热热精品中文字幕| 欧美自拍另类欧美综合图片区| 先锋影音xfyy5566男人资源| 亚洲人成色77777在线观看大战| 精品国产一区二区三区久久狼| 国产欧美综合一区二区三区| 亚洲精品亚洲人成在线观看麻豆|