- 相關(guān)推薦
八年級(jí)數(shù)學(xué)教案最新
作為一名人民教師,常常要寫(xiě)一份優(yōu)秀的教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)教案最新,僅供參考,歡迎大家閱讀。
八年級(jí)數(shù)學(xué)教案最新1
一、學(xué)習(xí)目標(biāo):
1、經(jīng)歷探索平方差公式的過(guò)程。
2、會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用;
難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、合作學(xué)習(xí)
你能用簡(jiǎn)便方法計(jì)算下列各題嗎?
(1)20xx×1999(2)998×1002
導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積、
。1)(x+1)(x—1);
。2)(m+2)(m—2)
。3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
結(jié)論:兩個(gè)數(shù)的.和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運(yùn)用平方差公式計(jì)算:
。1)(3x+2)(3x—2);
。2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:計(jì)算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習(xí)
計(jì)算:
。1)(a+b)(—b+a);
。2)(—a—b)(a—b);
。3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結(jié)
。╝+b)(a—b)=a2—b2
八年級(jí)數(shù)學(xué)教案最新2
分析:由二次根式的定義,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
(3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>
2。當(dāng)x
>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的'取值范圍是全體實(shí)數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。
八年級(jí)數(shù)學(xué)教案最新3
教學(xué)目標(biāo):
1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的合情推力意識(shí),主動(dòng)探究的習(xí)慣,進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系。
2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單的推理的意識(shí)及能力。
重點(diǎn)難點(diǎn):
重點(diǎn):了解勾股定理的由來(lái),并能用它來(lái)解決一些簡(jiǎn)單的問(wèn)題。
難點(diǎn):勾股定理的發(fā)現(xiàn)
教學(xué)過(guò)程
一、創(chuàng)設(shè)問(wèn)題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題
出示投影1(章前的圖文p1)教師道白:介紹我國(guó)古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國(guó)是最早了解勾股定理的國(guó)家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。
出示投影2(書(shū)中的P2圖1—2)并回答:
1、觀察圖
1—2,正方形A中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
正方形B中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
正方形C中有_______個(gè)小方格,即A的面積為_(kāi)_____個(gè)單位。
2、你是怎樣得出上面的結(jié)果的`?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問(wèn):
3、圖
1—2中,A,B,C之間的面積之間有什么關(guān)系?
學(xué)生交流后形成共識(shí),教師板書(shū),A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?
二、做一做
出示投影3(書(shū)中P3圖1—4)提問(wèn):
1、圖
1—3中,A,B,C之間有什么關(guān)系?
2、圖
1—4中,A,B,C之間有什么關(guān)系?
3、從圖
1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?
學(xué)生討論、交流形成共識(shí)后,教師總結(jié):
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖
1—1、1—2、1—3、1—4中,你能用三角形的邊長(zhǎng)表示正方形的面積嗎?
2、你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間的關(guān)系嗎?
在同學(xué)的交流基礎(chǔ)上,老師板書(shū):
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說(shuō):如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國(guó)古代稱直角三角形的較短的直角邊為勾,較長(zhǎng)的為股,斜邊為弦,這就是勾股定理的由來(lái)。
3、分別以
5厘米和12厘米為直角邊做出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度(學(xué)生測(cè)量后回答斜邊長(zhǎng)為13)請(qǐng)大家想一想(2)中的規(guī)律,對(duì)這個(gè)三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長(zhǎng)嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習(xí)
1、錯(cuò)例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應(yīng)滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個(gè)必不可少的條件,可本題
△ ABC并未說(shuō)明它是否是直角三角形,所以用勾股定理就沒(méi)有依據(jù)。
。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個(gè)題目條件不足,第三邊無(wú)法求得。
2、練習(xí)P
7 §1.1 1
六、作業(yè)
課本P7 §1.1 2、3、4
【八年級(jí)數(shù)學(xué)教案最新】相關(guān)文章:
最新小學(xué)數(shù)學(xué)教案范文11-27
八年級(jí)上冊(cè)數(shù)學(xué)教案10-16
八年級(jí)數(shù)學(xué)教案(15篇)01-08
最新八年級(jí)自我陳述報(bào)告04-24