- 相關(guān)推薦
高中函數(shù)教案
作為一位杰出的教職工,很有必要精心設(shè)計一份教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?以下是小編收集整理的高中函數(shù)教案,歡迎閱讀與收藏。
高中函數(shù)教案1
【教學(xué)目標】
(一)知識與技能
1、了解冪函數(shù)的概念,會畫冪函數(shù)y?x,y?x,y?x,y?x,y?x的圖象,并能結(jié)合這幾個冪函數(shù)的圖象,了解冪函數(shù)圖象的變化情況和性質(zhì)。
2、了解幾個常見的冪函數(shù)的性質(zhì)。
(二)過程與方法
1、通過觀察、總結(jié)冪函數(shù)的性質(zhì),提高概括抽象和識圖能力。
2、體會數(shù)形結(jié)合的思想。
(三)情感態(tài)度與價值觀
1、通過生活實例引出冪函數(shù)的概念,體會生活中處處有數(shù)學(xué),樹立學(xué)以致用的意識。
2、通過合作學(xué)習(xí),增強合作意識。
【教學(xué)重點】
冪函數(shù)的定義
【教學(xué)難點】
會求冪函數(shù)的定義域,會畫簡單冪函數(shù)的圖象、
【教學(xué)方法】
啟發(fā)式、講練結(jié)合教學(xué)過程
一、復(fù)習(xí)舊課
二、創(chuàng)設(shè)情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積S?a2,這里S是a的函數(shù)。
問題3:如果正方體的邊長為a,那么正方體的體積V?a3,這里V是a的函數(shù)。
問題4:如果正方形場地面積為S,那么正方形的邊長a?S12,這里a是S的函數(shù)
問題5:如果某人ts內(nèi)騎車行進了1km,那么他騎車的速度V?t?1km/s,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量)這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
(一)冪函數(shù)的概念
如果設(shè)變量為x,函數(shù)值為y,你能根據(jù)以上的生活實例得到怎樣的一些具體的函數(shù)式?
這里所得到的.函數(shù)是冪函數(shù)的幾個典型代表,你能根據(jù)此給出冪函數(shù)的一般式嗎?冪函數(shù)的定義:一般地,我們把形如y?x?的函數(shù)稱為冪函數(shù)(power function),其中x是自變量,?是常數(shù)。 【探究一】冪函數(shù)有什么特點?
結(jié)論:對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù)試一試:判斷下列函數(shù)那些是冪函數(shù)練習(xí)1判斷下列函數(shù)是不是冪函數(shù)3(1) y=2 x;(2) y=2 x5;7(3) y=x8;(4) y=x2+3、
根據(jù)你的學(xué)習(xí)經(jīng)歷,你覺得求一個函數(shù)的定義域應(yīng)該從哪些方面來考慮?
(二):求冪函數(shù)的定義域
1.什么是函數(shù)的定義域?
函數(shù)自變量的取值范圍叫做函數(shù)的定義域2.求函數(shù)的定義域時依據(jù)哪些原則?(1)解析式為整式時,x取值是全體實數(shù)。
2 (2)解析式是分式時,x取值使分母不等于零。
(3)解析式為偶次方根時,x取值使被開方數(shù)取非負實數(shù)。 (4)以上幾種情況同時出現(xiàn)時,x取各部分的交集。
(5)當(dāng)解析式涉及到具體應(yīng)用題時,x取值除了使解析式有意義還要使實際問題有意義。例1寫出下列函數(shù)的定義域:1(1) y=x3;(2) y=x2;-32、 (3) y=x-;(4) y=x2解:(1)函數(shù)y=x3的定義域為R;
1(2)函數(shù)y=x2,即y=x,定義域為[0,+∞);
12(3)函數(shù)y=x-,即y=2,定義域為(-∞,0)∪(0,+∞);
x3-1(4)函數(shù)y=x2,即y=,其定義域為(0,+∞)、
3 x練習(xí)2求下列函數(shù)的定義域:
11-(1) y=x2;(2) y=x 3;(3) y=x-1;(4) y=x2、
(三)、幾個常見冪函數(shù)的圖象和性質(zhì)
我們已經(jīng)學(xué)習(xí)了冪函數(shù)(1) y=x;(2) y=x2.(3) y=x-、(4)y=x3 (5) y=1x2;請同學(xué)們在同一坐標系中畫出它們的圖象.性質(zhì):冪函數(shù)隨冪指數(shù)α的取值不同,它們的性質(zhì)和圖象也不盡相同,但也有一些共性,例如,所有的冪函數(shù)都通過點(1,1),都經(jīng)過第一象限;當(dāng)??0是,圖象過點(1,1),(0,0),且在第一象限隨x的增大而上升,函數(shù)在區(qū)間?0,???上是單調(diào)增函數(shù)。??0時冪函數(shù)y?x?圖象的基本特征:過點(1,1),且在第一象限隨x的增大而下降,函數(shù)在區(qū)間(0,??)上是單調(diào)減函數(shù),且向右無限接近X軸,向上無限接 近Y軸。
(四)課堂小結(jié)
(五)課后作業(yè)
1、教材P 100,練習(xí)A第1題、
12在同一坐標系中畫出函數(shù)y=x與y=x2的圖象,并指數(shù)這兩個函數(shù)各有什么性質(zhì)以
3及它們的圖象關(guān)系
高中函數(shù)教案2
一、教學(xué)目標
(一)知識教學(xué)點
知道一次函數(shù)的圖象是直線,了解直線方程的概念,掌握直線的傾斜角和斜率的概念以及直線的斜率公式。
(二)能力訓(xùn)練點
通過對研究直線方程的必要性的分析,培養(yǎng)學(xué)生分析、提出問題的能力;通過建立直線上的點與直線的方程的解的一一對應(yīng)關(guān)系、方程和直線的對應(yīng)關(guān)系,培養(yǎng)學(xué)生的知識轉(zhuǎn)化、遷移能力。
(三)學(xué)科滲透點
分析問題、提出問題的思維品質(zhì),事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證唯物主義思想。
二、教材分析
1。重點:通過對一次函數(shù)的研究,學(xué)生對直線的方程已有所了解,要對進一步研究直線方程的內(nèi)容進行介紹,以激發(fā)學(xué)生學(xué)習(xí)這一部分知識的興趣;直線的傾斜角和斜率是反映直線相對于x軸正方向的傾斜程度的,是研究兩條直線位置關(guān)系的重要依據(jù),要正確理解概念;斜率公式要在熟練運用上多下功夫。
2。難點:一次函數(shù)與其圖象的對應(yīng)關(guān)系、直線方程與直線的對應(yīng)關(guān)系是難點。由于以后還要專門研究曲線與方程,對這一點只需一般介紹就可以了。
3。疑點:是否有繼續(xù)研究直線方程的必要?
三、活動設(shè)計
啟發(fā)、思考、問答、討論、練習(xí)。
四、教學(xué)過程
(一)復(fù)習(xí)一次函數(shù)及其圖象
已知一次函數(shù)y=2x+1,試判斷點A(1,2)和點B(2,1)是否在函數(shù)圖象上。初中我們是這樣解答的:∵A(1,2)的坐標滿足函數(shù)式,
∴點A在函數(shù)圖象上。
∵B(2,1)的坐標不滿足函數(shù)式,∴點B不在函數(shù)圖象上。
現(xiàn)在我們問:這樣解答的理論依據(jù)是什么?(這個問題是本課的難點,要給足夠的時間讓學(xué)生思考、體會。)討論作答:判斷點A在函數(shù)圖象上的理論依據(jù)是:滿足函數(shù)關(guān)系式的點都在函數(shù)的圖象上;判斷點B不在函數(shù)圖象上的理論依據(jù)是:函數(shù)圖象上的點的坐標應(yīng)滿足函數(shù)關(guān)系式。簡言之,就是函數(shù)圖象上的點與滿足函數(shù)式的有序數(shù)對具有一一對應(yīng)關(guān)系。
(二)直線的方程
引導(dǎo)學(xué)生思考:直角坐標平面內(nèi),一次函數(shù)的圖象都是直線嗎?直線都是一次函數(shù)的圖象嗎?
一次函數(shù)的圖象是直線,直線不一定是一次函數(shù)的圖象,如直線x=a連函數(shù)都不是。一次函數(shù)y=kx+b,x=a都可以看作二元一次方程,這個方程的解和它所表示的直線上的點一一對應(yīng)。
以一個方程的解為坐標的點都是某條直線上的點;反之,這條直線上的點的坐標都是這個方程的解。這時,這個方程就叫做這條直線的方程;這條直線就叫做這個方程的.直線。
上面的定義可簡言之:(方程)有一個解(直線上)就有一個點;(直線上)有一個點(方程)就有一個解,即方程的解與直線上的點是一一對應(yīng)的。
顯然,直線的方程是比一次函數(shù)包含對象更廣泛的一個概念。
(三)進一步研究直線方程的必要性
通過研究一次函數(shù),我們對直線的方程已有了一些了解,但有些問題還沒有完全解決,如y=kx+b中k的幾何含意、已知直線上一點和直線的方向怎樣求直線的方程、怎樣通過直線的方程來研究兩條直線的位置關(guān)系等都有待于我們繼續(xù)研究。
(四)直線的傾斜角
一條直線l向上的方向與x軸的正方向所成的最小正角,叫做這條直線的傾斜角,如圖1-21中的α。特別地,當(dāng)直線l和x軸平行時,我們規(guī)定它的傾斜角為0°,因此,傾斜角的取值范圍是0°≤α<180°。
直線傾斜角角的定義有下面三個要點:
(1)以x軸正向作為參考方向(始邊);
(2)直線向上的方向作為終邊;
(3)最小正角。
按照這個定義不難看出:直線與傾角是多對一的映射關(guān)系。
(五)直線的斜率
傾斜角不是90°的直線。它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示,即
直線與斜率之間的對應(yīng)不是映射,因為垂直于x軸的直線沒有斜率。
(六)過兩點的直線的斜率公式
在坐標平面上,已知兩點P1(x1,y1)、P2(x2,y2),由于兩點可以確定一條直線,直線P1P2就是確定的。當(dāng)x1≠x2時,直線的傾角不等于90°時,這條直線的斜率也是確定的。怎樣用P2和P1的坐標來表示這條直線的斜率?
P2分別向x軸作垂線P1M1、P2M2,再作P1Q⊥P2M,垂足分別是M1、M2、Q。那么:
α=∠QP1P2(圖1-22甲)或α=π-∠P2P1Q(圖1-22乙)
綜上所述,我們得到經(jīng)過點P1(x1,y1)、P2(x2,y2)兩點的直線的斜率公式:
對于上面的斜率公式要注意下面四點:(1)當(dāng)x1=x2時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(七)例題
例1如圖1-23,直線l1的傾斜角α1=30°,直線l2⊥l1,求l1、l2的斜率。
∵l2的傾斜角α2=90°+30°=120°,
本例題是用來復(fù)習(xí)鞏固直線的傾斜角和斜率以及它們之間的關(guān)系的,可由學(xué)生課堂練習(xí),學(xué)生演板。
例2求經(jīng)過A(-2,0)、B(-5,3)兩點的直線的斜率和傾斜角。
∴tgα=-1。∵0°≤α<180°,∴α=135°。
因此,這條直線的斜率是-1,傾斜角是135°。
講此例題時,要進一步強調(diào)k與P1P2的順序無關(guān),直線的斜率和傾斜角可通過直線上的兩點的坐標求得。
(八)課后小結(jié)
(1)直線的方程的傾斜角的概念。(2)直線的傾斜角和斜率的概念。
(3)直線的斜率公式。
五、布置作業(yè)
1。(練習(xí)
六、板書設(shè)計
直線方程的點斜式、斜截式、兩點式和截距式
高中函數(shù)教案3
一、教材分析
1、教材的地位和作用
二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進行研究的,在初中的學(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),學(xué)生已經(jīng)基本掌握了二次函數(shù)的圖象及一些性質(zhì),只是研究函數(shù)的方法都是按照函數(shù)解析式---定義域----圖象----性質(zhì)的方法進行的,基于這種情況,我認為本節(jié)課的作用是讓學(xué)生借助于熟悉的函數(shù)來進一步學(xué)習(xí)研究函數(shù)的更一般的方法,即:利用解析式分析性質(zhì)來推斷函數(shù)圖象。它可以進一步深化學(xué)生對函數(shù)概念與性質(zhì)的理解與認識,使學(xué)生得到較系統(tǒng)的函數(shù)知識和研究函數(shù)的方法,站在新的高度研究函數(shù)的性質(zhì)與圖象。因此,本節(jié)課的內(nèi)容十分重要。
2、教學(xué)的重點和難點
教學(xué)重點:使學(xué)生掌握二次函數(shù)的概念、性質(zhì)和圖象;從函數(shù)的性質(zhì)推斷圖象的方法。
教學(xué)難點:掌握從函數(shù)的性質(zhì)推斷圖象的方法。
二、目標分析
按照新課標指出三維目標,根據(jù)任教班級學(xué)生的實際情況,本節(jié)課我確定的教學(xué)目標是:
1、知識與技能:掌握二次函數(shù)的性質(zhì)與圖象,能夠借助于具體的二次函數(shù),理解和掌握從函數(shù)的性質(zhì)推斷圖象的方研究法。
2、過程與方法:通過老師的引導(dǎo)、點撥,讓學(xué)生在分組合作、積極探索的氛圍中,掌握從函數(shù)解析式、性質(zhì)出發(fā)去認識函數(shù)圖象的高度理解和研究函數(shù)的方法。
3、情感、態(tài)度、價值觀:讓學(xué)生感受數(shù)學(xué)思想方法之美、體會數(shù)學(xué)思想方法之重要;培養(yǎng)學(xué)生主動學(xué)習(xí)、合作交流的意識等。
三、教法學(xué)法分析
遵循“教師的主導(dǎo)作用和學(xué)生的主體地位相統(tǒng)一的教學(xué)規(guī)律”,從教師的角色突出體現(xiàn)教師是設(shè)計者、組織者、引導(dǎo)者、合作者,經(jīng)過教師對教材的分析理解,在教師的組織引導(dǎo)和師生互動過程中以問題為載體實施整個教學(xué)過程;在學(xué)生這方面,通過自主探索、合作交流、歸納方法等一系列活動為主線,感受知識的形成過程,拓展和完善自己的認知結(jié)構(gòu),進而體現(xiàn)出教學(xué)過程中教師與學(xué)生的雙主體作用。
四、教學(xué)過程分析
根據(jù)新課標的理念,我把整個的教學(xué)過程分為六個階段,即:創(chuàng)設(shè)情景、提出問題
師生互動、探究新知
獨立探究,鞏固方法
強化訓(xùn)練,加深理解
小結(jié)歸納,拓展深化
布置作業(yè),提高升華
環(huán)節(jié)1本節(jié)課一開始我就讓學(xué)生直接總結(jié)出二次函數(shù)的性質(zhì)與圖象形狀,在學(xué)生回答后,以有必要再重復(fù)嗎?編者的失誤?還是另有用意呢?的設(shè)問來激發(fā)學(xué)生的求知欲,在學(xué)生感覺很疑惑的時候馬上進入環(huán)節(jié)2:試作出二次函數(shù)
的圖象。目的是充分暴露學(xué)生在作圖時不能很好的`結(jié)合函數(shù)的性質(zhì)而出現(xiàn)的錯誤或偏差問題,突出本節(jié)課的重要性。在學(xué)生總結(jié)交流的基礎(chǔ)上教師指出學(xué)生的錯誤并以設(shè)問的方式提出本節(jié)課的目標:如何利用函數(shù)性質(zhì)的研究來推斷出較為準確的函數(shù)圖象,進而引導(dǎo)學(xué)生進入師生互動、探究新知階段。
在這個階段,我引用課本所給的例題1請同學(xué)們以學(xué)習(xí)小組為單位嘗試完成并作出總結(jié)發(fā)言。目的是:讓學(xué)生充分參與,在合作探究中讓學(xué)生最大限度地突破目標或暴露出在嘗試研究過程中出現(xiàn)的分析障礙,即不能很好的把握函數(shù)的性質(zhì)對圖象的影響,不能把抽象的性質(zhì)與直觀的圖象融會貫通,這樣便于教師在與學(xué)生互動的過程中準確把握難點,各個擊破,最終形成知識的遷移。在學(xué)生探討后,教師選小組代表做總結(jié)發(fā)言,其他小組作出補充,教師引導(dǎo)從逐步完善函數(shù)性質(zhì)的分析。其中,學(xué)生對于對稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析闡述等可能存在困難。這時教師可以利用對解析式的分析結(jié)合多媒體演示引導(dǎo)學(xué)生得到分析的思路和解決的方法,在師生互動的過程中把函數(shù)的性質(zhì)完善。之后進入環(huán)節(jié)3:再次讓學(xué)生利用二次函數(shù)的性質(zhì)推斷出二次函數(shù)的圖象,強化用二次函數(shù)的性質(zhì)推斷圖象的關(guān)鍵。進而突破教學(xué)難點。讓學(xué)生真正實現(xiàn)知識的遷移,完成整個探究過程,形成較為完整的新的認知體系.當(dāng)然,在這個過程中可能會有學(xué)生提出圖象為什么是曲線而不是直線等問題,為了消除學(xué)生的疑惑,進入第4個環(huán)節(jié):教師要簡單說明這是研究函數(shù)要考慮的一個重要的性質(zhì),是函數(shù)的凹凸性,后面我們將要給大家介紹,同學(xué)們可以閱讀課本第110頁的探索與研究。這樣也給學(xué)生留下一個思考與探索的空間,培養(yǎng)學(xué)生課外閱讀、自主研究的能力,增強學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
在以上環(huán)節(jié)完成后,進入第5個環(huán)節(jié):讓學(xué)生對利用解析式分析性質(zhì)然后推斷函數(shù)圖象的研究過程進行梳理并加以提煉、抽象、概括,得出研究函數(shù)的具體操作過程,使問題得以升華,拓寬學(xué)生的思維,將新知識內(nèi)化到自己的認知結(jié)構(gòu)中去.最終尋求到解決問題的方法。
教學(xué)的最終目標應(yīng)該落實到每一個學(xué)生個體的內(nèi)化與發(fā)展,由此讓引導(dǎo)學(xué)生進入獨立探究,鞏固方法的階段。例2在題目的設(shè)置上變換二次函數(shù)的開口方向,目的是一方面使學(xué)生加深對知識的理解,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力.學(xué)生在例1的基礎(chǔ)上將會目標明確地進行函數(shù)性質(zhì)的研究,然后推斷出比較準確的函數(shù)圖象,使新知得到有效鞏固.
通過前面三個階段的學(xué)習(xí),學(xué)生應(yīng)該基本掌握了本節(jié)課的相關(guān)知識。但對二次函數(shù)中系數(shù)a、b、c的對二次函數(shù)的影響還有待提高,為此我把課本中的例3進行改編,引導(dǎo)學(xué)生進入強化訓(xùn)練,加深理解階段。一方面可以解決學(xué)生對奇偶性的質(zhì)疑,另一方面也可以把學(xué)生對二次函數(shù)的認識提到新的高度。
第五個階段:小結(jié)歸納,拓展深化。為了讓學(xué)生能夠站在更高的角度認識二次函數(shù)和掌握函數(shù)的一般研究方法,教師引導(dǎo)學(xué)生從兩個方面總結(jié)。在你對函數(shù)圖象與性質(zhì)的關(guān)系有怎樣的理解方面教師要引導(dǎo)、拓展,明確今天所學(xué)習(xí)的方法實際上是研究函數(shù)性質(zhì)圖象的一般方法,對于一些陌生的或較為復(fù)雜的函數(shù)只要借助于適當(dāng)?shù)姆椒ǖ玫较嚓P(guān)的性質(zhì)就可以推斷出函數(shù)的圖象,從而把學(xué)生的認知水平定格在一個新的高度去理解和認識函數(shù)問題。
最后一個階段是布置作業(yè),提高升華,作業(yè)的設(shè)置是分層落實.鞏固題讓學(xué)生復(fù)習(xí)解題思路,準確應(yīng)用,以便舉一反三.探究題通過對教材例題的改編,供學(xué)有余力的學(xué)生自主探索,提高他們分析問題、解決問題的能力.
以上六個階段環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動手操作,動眼觀察,動腦思考,親身經(jīng)歷了知識的形成和發(fā)展過程,并得以遷移內(nèi)化。而最終的探究作業(yè)又將激發(fā)學(xué)生興趣,帶領(lǐng)學(xué)生進入對二次函數(shù)更進一步的思考和研究之中,從而達到知識在課堂以外的延伸。總之,這節(jié)課是本著“授之以漁”而非“授之以魚”的理念來設(shè)計的。
高中函數(shù)教案4
教學(xué)目的:
1、掌握求函數(shù)值域的基本方法(直接法、換元法、判別式法);掌握二次函數(shù)值域(最值)或二次函數(shù)在某一給定區(qū)間上的值域(最值)的求法。
2、培養(yǎng)觀察分析、抽象概括能力和歸納總結(jié)能力;
教學(xué)重點:
值域的求法
教學(xué)難點:
二次函數(shù)在某一給定區(qū)間上的值域(最值)的求法
教學(xué)過程:
一、復(fù)習(xí)引入:函數(shù)的三要素是:定義域、值域和定義域到值域的.對應(yīng)法則;定義域和對應(yīng)法則一經(jīng)確定,值域就隨之確定。已學(xué)過的函數(shù)的值域二、講授新課
1、直接法:利用常見函數(shù)的值域來求
例1、求下列函數(shù)的值域
①y=3x+2(—1x1)②
③④
2、二次函數(shù)比區(qū)間上的值域(最值):
例2求下列函數(shù)的最大值、最小值與值域:
①;②;
③;④;
3、判別式法(△法):
判別式法一般用于分式函數(shù),其分子或分母中最高為二次式且至少有一個為二次式,解題中要注意二次項系數(shù)是否為0的討論及函數(shù)的定義域。
例3、求函數(shù)的值域
4、換元法
例4、求函數(shù)的值域
5、分段函數(shù)
例5、求函數(shù)y=|x+1|+|x—2|的值域。
三、單元小結(jié):
函數(shù)的概念,解析式,定義域,值域的求法。
四、作業(yè):
《精析精練》P58智能達標訓(xùn)練
高中函數(shù)教案5
教學(xué)目標:
掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.
教學(xué)重點:
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點:
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的'當(dāng)兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時,tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運用這些公式要注意如下幾點:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當(dāng)α=π2 +kπ,k∈Z時,tanα的值不存在;當(dāng)α=π4 +kπ2 ,k∈Z時tan2α的值不存在).
當(dāng)α=π2 +kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當(dāng)且僅當(dāng)α=kπ(k∈Z)時,sin2α=2sinα=0成立].
同樣在一般情況下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.
高中函數(shù)教案6
教學(xué)目標
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴謹?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點難點分析
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的.代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.
三、教法建議
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以
的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值
開始,逐漸讓
在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式
時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如
)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
教案網(wǎng)權(quán)威發(fā)布高中高一下冊語文《孔雀東南飛》教學(xué)設(shè)計,更多高中高一下冊語文《孔雀東南飛》教學(xué)設(shè)計相關(guān)信息請訪問教案網(wǎng)。
設(shè)計說明
1、指導(dǎo)思想
本設(shè)計依據(jù)新課標的要求,立足于培養(yǎng)學(xué)生識記理解古漢語知識和鑒賞古典文學(xué)作品的能力,在自主、合作、探究的學(xué)習(xí)過程中養(yǎng)成自主學(xué)習(xí)、深入探究的良好習(xí)慣。
2、教學(xué)設(shè)想
《孔雀東南飛》是我國古代最長的敘事詩,也是樂府詩中的一朵奇葩,在思想上和藝術(shù)上都有極高的成就,對于這樣一篇經(jīng)典名作,我認為應(yīng)該不惜時間精讀細研,因此我確定用三課時完成。
本單元的話題為“愛的生命的樂章”,與單元話題相一致,我把本課的教學(xué)重點確定為:理解青年男女對美好愛情的執(zhí)著追求和封建禮教、專制家長摧殘青年男女愛情的罪惡。要深入理解這一重點問題,必須先掃清字詞障礙,讀懂原文。本文寫作年代離我們十分久遠,文中有很多生詞、古今異義詞等文言知識,可通過本課的學(xué)習(xí)讓學(xué)生積累有關(guān)文言基礎(chǔ)知識,培養(yǎng)學(xué)生閱讀文言文的能力。另外,人物形象的塑造、思想價值的實現(xiàn)要借助于一定的寫作手法,樂府詩常用的賦、比、興手法也應(yīng)是學(xué)習(xí)的內(nèi)容之一。因此,我確定了這樣三個方面的學(xué)習(xí)目標。
疏通文意,學(xué)習(xí)積累文言基礎(chǔ)知識,學(xué)生依靠課下注釋和工具書基本可以完成,因此可采用自主、合作、探究的學(xué)習(xí)方式以學(xué)生自行解決為主,教師可就疑難問題略作指導(dǎo)。重點目標的實現(xiàn)可從分析人物形象入手,采用問題研討的方式引導(dǎo)學(xué)生層層深入地理解作品思想內(nèi)涵和社會意義。難點(起興手法)的突破可引導(dǎo)學(xué)生拓展聯(lián)想,用學(xué)生較為熟悉的例子幫助他們理解。
3、本設(shè)計的特點
本設(shè)計沒有刻意求新,而是重在扎實嚴謹上作文章。教學(xué)內(nèi)容的安排由易到難;各教學(xué)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,過渡嚴謹自然。教學(xué)活動突出了學(xué)生的主體地位。
《孔雀東南飛》教學(xué)設(shè)計
教學(xué)目標:
1、學(xué)習(xí)積累文言基礎(chǔ)知識:實詞、多義詞、偏義復(fù)詞、古今異義詞、互文等,培養(yǎng)學(xué)生閱讀文言文的能力
2、分析人物形象,理解劉蘭芝、焦仲卿對愛情的執(zhí)著追求和封建禮教、專制家長摧殘青年男女愛情幸福的罪惡,深入理解作品的社會意義,培養(yǎng)學(xué)生分析鑒賞文學(xué)作品的能力并引導(dǎo)學(xué)生樹立正確的愛情觀、價值觀
3、了解樂府詩歌的常用表現(xiàn)手法賦、比、興
教學(xué)重點:劉蘭芝、焦仲卿對愛情的執(zhí)著追求和封建禮教、專制家長摧殘青年男女愛情幸福的罪惡
教學(xué)難點:賦、比、興手法
教學(xué)用具:課件
教學(xué)時數(shù):三課時
教學(xué)過程:
第一課時
活動內(nèi)容:疏通文本,理清情節(jié)結(jié)構(gòu),初步認識作品思想內(nèi)涵
活動過程:
一、導(dǎo)入
愛情是文學(xué)作品永恒的主題,古今中外的文人墨客寫下無數(shù)優(yōu)美的詩篇謳歌美麗的愛情。但在中國漫長的封建社會里,封建禮教、家長制等傳統(tǒng)文化的冷漠殘酷使無數(shù)美麗的愛情遭到了無情的摧殘,從而造成了一幕幕愛情悲劇。今天就讓我們走近焦仲卿和劉蘭芝的愛情悲劇,感受封建家長制的罪惡和這種制度下的青年男女對愛情的不屈追求。
二、學(xué)生自己閱讀注解,識記有關(guān)文學(xué)常識
1、樂府:本是漢武帝設(shè)立的音樂機關(guān),它的職責(zé)是采集民間歌謠或文人的詩來配樂,以備朝廷之用。它所搜集整理的詩歌后世就叫“樂府詩”或“樂府”。
2、《孔雀東南飛》是我國古代最長的一首長篇敘事詩,也是樂府民歌的代表作之一,與北朝的《木蘭辭》并稱“樂府雙璧”。
3、本詩出自南朝徐陵編寫的《玉臺新詠》。《玉臺新詠》是繼《詩經(jīng)》、《楚辭》之后最早的一部詩歌總集。
三、初讀課文,疏通文意,掌握有關(guān)文言知識
1、學(xué)生默讀全詩,借助工具書和注釋疏通文意,不懂的詞句做出記號
2、就自己不懂的詞句在小組內(nèi)討論交流
3、教師解答學(xué)生解決不了的疑難字詞,并指導(dǎo)學(xué)生理解歸納本課中古今異義詞、偏義復(fù)詞、互文等文言知識
出示示例:(前兩類現(xiàn)象各出示一個例子,其他讓學(xué)生自己去整理)
①古今異義詞
汝豈得自由(古:自作主張 今:沒有束縛)
可憐體無比(古:可愛 今:值得同情)
葉葉相交通(古:交錯相通 今:指運輸)
本自無教訓(xùn)(古:教養(yǎng) 今:失敗的經(jīng)驗)
處分適兄意(古:處理 今:處罰)
②偏義復(fù)詞
兩個意義相關(guān)或相反的詞連起來當(dāng)作一個詞使用,實際上只取其中一個詞的意義,另一個詞只作陪襯。如:
晝夜勤作息(只取“作”之意,“息”只為陪襯)
便可白公姥(只取“姥”之意)
我有親父母(只取“母”之意)
逼迫兼弟兄(只取“兄”之意)
③ 互文句
東西植松柏,左右種梧桐
枝枝相覆蓋,葉葉相交通
四、在掃清文字障礙的基礎(chǔ)上,再瀏覽課文。
1、結(jié)合詩前小序,了解故事梗概
2、理清情節(jié)結(jié)構(gòu),給故事發(fā)展的每一個階段擬一個小標題
學(xué)生回答后教師出示:
故事開端(1-2段) 自請遣歸
教案網(wǎng)權(quán)威發(fā)布高中高一數(shù)學(xué)教案:兩角差的余弦公式教案,更多高中高一數(shù)學(xué)教案相關(guān)信息請訪問教案網(wǎng)。
兩角差的余弦公式
【使用說明】 1、復(fù)習(xí)教材P124-P127頁,40分鐘時間完成預(yù)習(xí)學(xué)案
2、有余力的學(xué)生可在完成探究案中的部分內(nèi)容。
【學(xué)習(xí)目標】
知識與技能:理解兩角差的余弦公式的推導(dǎo)過程及其結(jié)構(gòu)特征并能靈活運用。
過程與方法:應(yīng)用已學(xué)知識和方法思考問題,分析問題,解決問題的能力。
情感態(tài)度價值觀: 通過公式推導(dǎo)引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,培養(yǎng)學(xué)生的創(chuàng)新意識和學(xué)習(xí)數(shù)學(xué)的興趣。
.【重點】通過探索得到兩角差的余弦公式以及公式的靈活運用
【難點】兩角差余弦公式的推導(dǎo)過程
預(yù)習(xí)自學(xué)案
一、知識鏈接
1. 寫出 的三角函數(shù)線 :
2. 向量 , 的數(shù)量積,
①定義:
②坐標運算法則:
3. , ,那么 是否等于 呢?
下面我們就探討兩角差的余弦公式
二、教材導(dǎo)讀
1.、兩角差的余弦公式的推導(dǎo)思路
如圖,建立單位圓O
(1)利用單位圓上的三角函數(shù)線
設(shè)
則
又OM=OB+BM
=OB+CP
=OA_____ +AP_____
=
從而得到兩角差的余弦公式:
____________________________________
(2)利用兩點間距離公式
如圖,角 的終邊與單位圓交于A( )
角 的終邊與單位圓交于B( )
角 的終邊與單位圓交于P( )
點T( )
AB與PT關(guān)系如何?
從而得到兩角差的余弦公式:
____________________________________
(3) 利用平面向量的知識
用 表示向量 ,
=( , ) =( , )
則 . =
設(shè) 與 的夾角為
①當(dāng) 時:
=
從而得出
②當(dāng) 時顯然此時 已經(jīng)不是向量 的夾角,在 范圍內(nèi),是向量夾角的補角.我們設(shè)夾角為 ,則 + =
此時 =
從而得出
2、兩角差的余弦公式
____________________________
三、預(yù)習(xí)檢測
1. 利用余弦公式計算 的值.
2. 怎樣求 的值
你的疑惑是什么?
________________________________________________________
______________________________________________________
探究案
例1. 利用差角余弦公式求 的值.
例2.已知 , 是第三象限角,求 的值.
訓(xùn)練案
一、 基礎(chǔ)訓(xùn)練題
1、
2、
3、
二、綜合題
--------------------------------------------------
高中函數(shù)教案7
高一數(shù)學(xué)上冊知識點整理:指數(shù)函數(shù)、函數(shù)奇偶性
指數(shù)函數(shù)
(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。
(7)函數(shù)總是通過(0,1)這點。
(8)顯然指數(shù)函數(shù)無界。
奇偶性
注圖:(1)為奇函數(shù)(2)為偶函數(shù)
1.定義
一般地,對于函數(shù)f(x)
(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的.任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個定義域而言
②奇、偶函數(shù)的定義域一定關(guān)于原點對稱,如果一個函數(shù)的定義域不關(guān)于原點對稱,則這個函數(shù)一定不是奇(或偶)函數(shù)。
(分析:判斷函數(shù)的奇偶性,首先是檢驗其定義域是否關(guān)于原點對稱,然后再嚴格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)
③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義
2.奇偶函數(shù)圖像的特征:
定理奇函數(shù)的圖像關(guān)于原點成中心對稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對稱圖形。
f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點對稱
點(x,y)→(-x,-y)
奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。
偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。
3.奇偶函數(shù)運算
(1).兩個偶函數(shù)相加所得的和為偶函數(shù).
(2).兩個奇函數(shù)相加所得的和為奇函數(shù).
(3).一個偶函數(shù)與一個奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).
(4).兩個偶函數(shù)相乘所得的積為偶函數(shù).
(5).兩個奇函數(shù)相乘所得的積為偶函數(shù).
(6).一個偶函數(shù)與一個奇函數(shù)相乘所得的積為奇函數(shù).
相關(guān)知識
高一數(shù)學(xué)函數(shù)的奇偶性37
高中函數(shù)教案8
一、教材分析:
本節(jié)課是對第二章的基本知識和方法的總結(jié)與歸納,從整體上來把握本章,使學(xué)生基本知識系統(tǒng)化和網(wǎng)絡(luò)化,基本方法條理化。本章內(nèi)容大致分為三個部分:(1)直線的傾斜角和斜率;(2)直線方程;(3)兩條直線的位置關(guān)系。可采用分單元小結(jié)的方式,讓學(xué)生自己回顧和小結(jié)各單元知識。再此基礎(chǔ)上,教師可對一些關(guān)鍵處予以強調(diào)。比如可重申解析幾何的基本思想——坐標法,并用解析幾何的基本思想串聯(lián)全章知識,使全章知識網(wǎng)絡(luò)更加清晰。指出本章學(xué)習(xí)要求和要注意的問題,可讓學(xué)生閱讀教科書中“學(xué)習(xí)要求和要注意的問題”有關(guān)內(nèi)容。教師重申坐標法、函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想及分類與討論思想等數(shù)學(xué)思想方法在本章中的特殊地位。
二、教學(xué)目標:
通過總結(jié)和歸納直線與方程的知識,對全章知識內(nèi)容進行一次梳理,突出知識間的內(nèi)在聯(lián)系,進一步提高學(xué)生綜合運用知識解決問題的能力。能夠使學(xué)生綜合運用知識解決有關(guān)問題,培養(yǎng)學(xué)生分析、探究和思考問題的能力,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)分析討論的思想和抽象思維能力。
三、教學(xué)重點:
直線的傾斜角和斜率.
2.直線的方程和直線的位置關(guān)系的應(yīng)用.
3.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)分類討論的思想和抽象思維能力.
教學(xué)難點:
1、數(shù)形結(jié)合和分類討論思想的滲透和理解.
2、處理直線綜合問題的策略.
四、教學(xué)過程
(一).知識要點:學(xué)生閱讀教材的`小結(jié)部分.
(二).典例解析
1.例1.下列命題正確的有⑤:①每條直線都有唯一一個傾斜角與之對應(yīng),也有唯一一個斜率與之對應(yīng);②傾斜角的范圍是:0°≤α180°,且當(dāng)傾斜角增大時,斜率也增大;③過兩點A(1,2),B(m,-5)的直線可以用兩點式表示;⑤直線Ax+By+C=0(A,B不同時為零),當(dāng)A,B,C中有一個為零時,這個方程不能化為截距式.⑥若兩直線平行,則它們的斜率必相等;⑦若兩直線垂直,則它們的斜率相乘必等于-1.
2.例2.若直線與直線,則時,a_________;時,a=__________;這時它們之間的距離是________;時,a=________.答案:;;;
3.例3.求滿足下列條件的直線方程:(1)經(jīng)過點P(2,-1)且與直線2x+3y+12=0平行;(2)經(jīng)過點Q(-1,3)且與直線x+2y-1=0垂直;(3)經(jīng)過點R(-2,3)且在兩坐標軸上截距相等;(4)經(jīng)過點M(1,2)且與點A(2,3)、B(4,-5)距離相等;
答案:(1)2x+3y-1=0;(2)2x-y+5=0;(3)x+y-1=0或3x+2y=0;(4)4x+y-6=0或3x+2y-7=0
4.例4.已知直線L過點(1,2),且與x,y軸正半軸分別交于點A、B(1)求△AOB面積為4時L的方程。解:設(shè)A(a,0),B(0,b)∴a,b0∴L的方程為∵點(1,2)在直線上
∴∴①∵b0∴a1
(1)S△AOB===4∴a=2這時b=4∴當(dāng)a=2,b=4時S△AOB為4
此時直線L的方程為即2x+y-4=0
(2)求L在兩軸上截距之和為時L的方程.解:∴這時∴L在兩軸上截距之和為3+2時,直線L的方程為y=-x+2+
5.例5.已知△ABC的兩個頂點A(-10,2),B(6,4),垂心是H(5,2),求頂點C的坐標.
解:∵∴
∴直線AC的方程為
即x+2y+6=0(1)又∵∴BC所在直線與x軸垂直故直線BC的方程為x=6(2)解(1)(2)得點C的坐標為C(6,-6)
(三).課堂小結(jié):本節(jié)課總結(jié)了第三章的基本知識并形成知識網(wǎng)絡(luò),歸納了常見的解題方法,滲透了幾種重要的數(shù)學(xué)思想方法.
(四).作業(yè).:教材復(fù)習(xí)參考題
五、教后反思:
高中函數(shù)教案9
我本節(jié)課說課的內(nèi)容是高中數(shù)學(xué)第一冊第二章第六節(jié)“指數(shù)函數(shù)”的第一課時——指數(shù)函數(shù)的定義,圖像及性質(zhì)。我將嘗試運用新課標的理念指導(dǎo)本節(jié)課的教學(xué)。新課標指出,學(xué)生是教學(xué)的主體,教師的教要應(yīng)本著從學(xué)生的認知規(guī)律出發(fā),以學(xué)生活動為主線,在原有知識的基礎(chǔ)上,建構(gòu)新的知識體系。我將以此為基礎(chǔ)從教材分析,教學(xué)目標分析,教法學(xué)法分析和教學(xué)過程分析這幾個方面加以說明。
一、教材分析
1、教材的地位和作用: 函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的貫穿于整個高中數(shù)學(xué)之中。本節(jié)課是學(xué)生在已掌握了函數(shù)的一般性質(zhì)和簡單的指數(shù)運算的基礎(chǔ)上,進一步研究指數(shù)函數(shù),以及指數(shù)函數(shù)的圖像與性質(zhì),同時也為今后研究對數(shù)函數(shù)以及等比數(shù)列的性質(zhì)打下堅實的基礎(chǔ)。因此,本節(jié)課的內(nèi)容十分重要,它對知識起到了承上啟下的作用。
2、教學(xué)的重點和難點:根據(jù)這一節(jié)課的內(nèi)容特點以及學(xué)生的實際情況,我將本節(jié)課教學(xué)重點定為指數(shù)函數(shù)的圖像、性質(zhì)及其運用,本節(jié)課的難點是指數(shù)函數(shù)圖像和性質(zhì)的發(fā)現(xiàn)過程,及指數(shù)函數(shù)圖像與底的關(guān)系。
二、教學(xué)目標分析
基于對教材的理解和分析,我制定了以下的教學(xué)目標
1、知識目標(直接性目標):理解指數(shù)函數(shù)的.定義,掌握指數(shù)函數(shù)的圖像、性質(zhì)及其簡單應(yīng)用
2、能力目標(發(fā)展性目標):通過教學(xué)培養(yǎng)學(xué)生觀察、分析、歸納等思維能力,體會數(shù)形結(jié)合和分類討論,增強學(xué)生識圖用圖的能力
3、情感目標(可持續(xù)性目標): 通過學(xué)習(xí),使學(xué)生學(xué)會認識事物的特殊性與一般性之間的關(guān)系,培養(yǎng)學(xué)生勇于提問,善于探索的思維品質(zhì)。
三、教法學(xué)法分析
1、教學(xué)策略:首先從實際問題出發(fā),激發(fā)學(xué)生的學(xué)習(xí)興趣。第二步,學(xué)生歸納指數(shù)的圖像和性質(zhì)。第三步,典型例題分析,加深學(xué)生對指數(shù)函數(shù)的理解。
2、教學(xué): 貫徹引導(dǎo)發(fā)現(xiàn)式教學(xué)原則,在教學(xué)中既注重知識的直觀素材和背景材料,又要激活相關(guān)知識和引導(dǎo)學(xué)生思考、探究、創(chuàng)設(shè)有趣的問題。
3、教法分析:根據(jù)教學(xué)內(nèi)容和學(xué)生的狀況, 本節(jié)課我采用引導(dǎo)發(fā)現(xiàn)式的教學(xué)方法并充分利用多媒體輔助教學(xué)。
高中函數(shù)教案10
【教學(xué)課題】:
已知三角函數(shù)值求角
【教學(xué)目標】:
了解反三角函數(shù)的定義,掌握用反三角函數(shù)值表示給定區(qū)間上的角
【教學(xué)重點】:
掌握用反三角函數(shù)值表示給定區(qū)間上的角
【教學(xué)難點】:
反三角函數(shù)的定義
【教學(xué)過程】:
一、問題的提出:
在我們的學(xué)習(xí)中常遇到知三角函數(shù)值求角的情況,如果是特殊值,我們可以立即求出所有的角,如果不是特殊值(),我們?nèi)绾伪硎灸兀肯喈?dāng)于中如何用來表示,這是一個反解的過程,由此想到求反函數(shù)。但三角函數(shù)由于有周期性,它們不存在反函數(shù),這就要求我們把它們的定義域縮小,并且這個區(qū)間滿足:
(1)包含銳角;
(2)具有單調(diào)性;
(3)能取得三角函數(shù)值域上的所有值。
顯然對,這樣的區(qū)間是;對,這樣的區(qū)間是;對,這樣的區(qū)間是;
二、新課的引入:
1、反正弦定義:
反正弦函數(shù):函數(shù),的反函數(shù)叫做反正弦函數(shù),記作:。
對于注意:
(1)(相當(dāng)于原來函數(shù)的值域);
(2)(相當(dāng)于原來函數(shù)的定義域);
即:相當(dāng)于內(nèi)的一個角,這個角的正弦值為。
反正弦:符合條件()的角,叫做實數(shù)的反正弦,記作:。其中。
例如:
由此可見:書上的反正弦與反正弦函數(shù)是一致的,當(dāng)然理解了反正弦函數(shù),能使大家更加系統(tǒng)地掌握這部分知識。
2、反余弦定義:
反余弦函數(shù):函數(shù),的反函數(shù)叫做反余弦函數(shù),記作:。
對于注意:
(1)(相當(dāng)于原來函數(shù)的值域);
(2)(相當(dāng)于原來函數(shù)的定義域);
即:相當(dāng)于內(nèi)的一個角,這個角的余弦值為。
反余弦:符合條件()的`角,叫做實數(shù)的反正弦,記作:。其中。
例如:由于,故為負值時,表示的是鈍角。
3、反正切定義:
反正切函數(shù):函數(shù),的反函數(shù)叫做反正弦函數(shù),記作:
對于注意:
(1)(相當(dāng)于原來函數(shù)的值域);
(2)(相當(dāng)于原來函數(shù)的定義域);
即:相當(dāng)于內(nèi)的一個角,這個角的正切值為。
反正切:符合條件()的角,叫做實數(shù)的反正切,記作:。其中。
對于反三角函數(shù),大家切記:它們不是三角函數(shù)的反函數(shù),需要對定義域加以改進后才能出現(xiàn)反函數(shù)。反三角函數(shù)的性質(zhì),有興趣的同學(xué)可根據(jù)互為反函數(shù)的函數(shù)的圖象關(guān)于對稱這一特性,得到反三角函數(shù)的性質(zhì)。根據(jù)新教材的要求,這里就不再講了。
高中函數(shù)教案11
內(nèi)容與解析
(一)內(nèi)容:對數(shù)函數(shù)及其性質(zhì)
(二)解析:從近幾年高考試題看,主要考查對數(shù)函數(shù)的性質(zhì),一般綜合在對數(shù)函數(shù)中考查。題型主要是選擇題和填空題,命題靈活。學(xué)習(xí)本部分時,要重點掌握對數(shù)的運算性質(zhì)和技巧,并熟練應(yīng)用。
一、目標及其解析:
(一)教學(xué)目標
(1)了解對數(shù)函數(shù)在生產(chǎn)實際中的簡單應(yīng)用。進一步理解對數(shù)函數(shù)的圖象和性質(zhì);
(2)學(xué)習(xí)反函數(shù)的概念,理解對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標上看出互為反函數(shù)的兩個函數(shù)的圖象性質(zhì)。。
(二)解析
(1)在對數(shù)函數(shù)中,底數(shù)且,自變量,函數(shù)值。作為對數(shù)函數(shù)的三個要點,要做到道理明白、記憶牢固、運用準確。
(2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域。②把原函數(shù)y=f(x)視為方程,用y表示出x。③把x、y互換,同時標明反函數(shù)的定義域。
二、問題診斷分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關(guān)系是學(xué)好對數(shù)函數(shù)與反函數(shù)的基礎(chǔ)。
三、教學(xué)支持條件分析
在本節(jié)課一次遞推的教學(xué)中,準備使用PowerPoint 20xx。因為使用PowerPoint 20xx,有利于提供準確、最核心的文字信息,有利于幫助學(xué)生順利抓住老師上課思路,節(jié)省老師板書時間,讓學(xué)生盡快地進入對問題的分析當(dāng)中。
四、教學(xué)過程
問題一。對數(shù)函數(shù)模型思想及應(yīng)用:
①出示例題:溶液酸堿度的測量問題:溶液酸堿度pH的計算公式,其中表示溶液中氫離子的濃度,單位是摩爾/升。
(Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關(guān)系?
(Ⅱ)純凈水摩爾/升,計算純凈水的酸堿度。
②討論:抽象出的函數(shù)模型?如何應(yīng)用函數(shù)模型解決問題?強調(diào)數(shù)學(xué)應(yīng)用思想
問題二。反函數(shù):
①引言:當(dāng)一個函數(shù)是一一映射時,可以把這個函數(shù)的因變量作為一個新函數(shù)的自變量,而把這個函數(shù)的.自變量新的函數(shù)的因變量。我們稱這兩個函數(shù)為反函數(shù)(inverse function)
②探究:如何由求出x?
③分析:函數(shù)由解出,是把指數(shù)函數(shù)中的自變量與因變量對調(diào)位置而得出的習(xí)慣上我們通常用x表示自變量,y表示函數(shù),即寫為。
那么我們就說指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
④在同一平面直角坐標系中,畫出指數(shù)函數(shù)及其反函數(shù)圖象,發(fā)現(xiàn)什么性質(zhì)?
⑤分析:取圖象上的幾個點,說出它們關(guān)于直線的對稱點的坐標,并判斷它們是否在的圖象上,為什么?
⑥探究:如果在函數(shù)的圖象上,那么P0關(guān)于直線的對稱點在函數(shù)的圖象上嗎,為什么?
由上述過程可以得到什么結(jié)論?(互為反函數(shù)的兩個函數(shù)的圖象關(guān)于直線對稱)
⑦練習(xí):求下列函數(shù)的反函數(shù):;
(師生共練小結(jié)步驟:解x;習(xí)慣表示;定義域)
(二)小結(jié):函數(shù)模型應(yīng)用思想;反函數(shù)概念;閱讀P84材料
五、目標檢測
1(20xx全國卷Ⅱ文)函數(shù)y=(x 0)的反函數(shù)是
1B解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯,原函數(shù)y 0可知D錯,選B。
2(20xx廣東卷理)若函數(shù)是函數(shù)的反函數(shù),其圖像經(jīng)過點,則()
2 B解析:,代入,解得,所以,選B。
3求函數(shù)的反函數(shù)
3解析:顯然y0,反解可得,將x,y互換可得。可得原函數(shù)的反函數(shù)為。
高中函數(shù)教案12
授課時間
撰寫人
劉報
學(xué)習(xí)重點
函數(shù)單調(diào)性證明
學(xué)習(xí)難點
函數(shù)單調(diào)性應(yīng)用及證明
學(xué)習(xí)目標
1.理解函數(shù)的最大(小)值及其幾何意義;2.學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì).3.函數(shù)單調(diào)性證明
教學(xué)過程
一自主學(xué)習(xí)
1.指出函數(shù)的單調(diào)區(qū)間及單調(diào)性,并進行證明.2.函數(shù)的最小值為,的最大值為.
3:先完成下表,函數(shù)
最高點
最低點
,,4設(shè)函數(shù)y=f(x)的定義域為I,如果存在實數(shù)M滿足:對于任意的x∈I,都有f(x)≤M;存在x0∈I,使得f(x0)=M.那么,稱M是函數(shù)y=f(x)的。
仿照最大值定義,給出最小值(MinimumValue)的定義.
二師生互動
例1一枚炮彈發(fā)射,炮彈距地面高度h(米)與時間t(秒)的變化規(guī)律是,那么什么時刻距離地面的高度達到最大?最大是多少?
變式:經(jīng)過多少秒后炮彈落地?
試試:一段竹籬笆長20米,圍成一面靠墻的矩形菜地,如何設(shè)計使菜地面積最大?
例2求在區(qū)間[3,6]上的最大值和最小值.
變式:求的最大值和最小值.
練一練函數(shù)的'最小值為,最大值為.如果是呢?
三鞏固練習(xí)
1.函數(shù)的最大值是().A.-1B.0C.1D.22.函數(shù)的最小值是().A.0B.-1C.2D.33.函數(shù)的最小值是().A.0B.2C.4D.4.已知函數(shù)的圖象關(guān)于y軸對稱,且在區(qū)間上,當(dāng)時,有最小值
3,則在區(qū)間上,當(dāng)時,有最值為.5.函數(shù)的最大值為,最小值為.6.用多種方法求函數(shù)最小值.
四課后反思
五課后鞏固練習(xí)
1.作出函數(shù)的簡圖,研究當(dāng)自變量x在下列范圍內(nèi)取值時的最大值與最小值.(1);(2);(3).2.已知函數(shù)在區(qū)間是增函數(shù),則實數(shù)a的取值范圍
高中函數(shù)教案13
一.課前指導(dǎo)
學(xué)習(xí)目標
掌握余弦函數(shù)的周期和最小正周期,并能求出余弦函數(shù)的最小正周期。
掌握余弦函數(shù)的奇、偶性的判斷,并能求出余弦函數(shù)的單調(diào)區(qū)間。并能求出余弦函數(shù)的最大最小值與值域、
學(xué)法指導(dǎo)
1.利用換元法轉(zhuǎn)化為求二次函數(shù)等常見函數(shù)的值域.
2.將sin(-2x)化簡為-cos2x,然后利用對數(shù)函數(shù)單調(diào)性及余弦函數(shù)的有界性求得最大值.
要點導(dǎo)讀
1.從圖象上可以看出,;,的最小正周期為;
2.一般結(jié)論:函數(shù)及函數(shù),(其中為常數(shù),且,)的周期T=;
函數(shù)及函數(shù),的.周期T=;
3.函數(shù)y=cosx是(奇或偶)函數(shù)函數(shù)y=sinx是(奇或偶)函數(shù)
4.正弦函數(shù)在每一個閉區(qū)間上都是增函數(shù),其值從-1增大到1;
在每一個閉區(qū)間上都是減函數(shù),其值從1減小到-1.
余弦函數(shù)在每一個閉區(qū)間上都是增函數(shù),其值從-1增加到1;
在每一個閉區(qū)間上都是減函數(shù),其值從1減小到-1.
5.y=sinx的對稱軸為x=k∈Zy=cosx的對稱軸為x=k∈Z
二.課堂導(dǎo)學(xué)
例1.已知x∈,若方程mcosx-1=cosx+m有解,試求參數(shù)m的取值范圍.
例2.已知y=2cosx(0≤x≤2π)的圖像和直線y=2圍成一個封閉的平面圖形,則這個封閉圖形的面積是_________________.
例3.求下列函數(shù)值域:
(1)y=2cos2x+2cosx+1;(2)y=.
例4.已知0≤x≤,求函數(shù)y=cos2x-2acosx的最大值M(a)與最小值m(a).
點拔:利用換元法轉(zhuǎn)化為求二次函數(shù)的最值問題.
例5求下列函數(shù)的定義域:
(1)y=lgsin(cosx);(2)=.
三、課后測評
一、選擇題(每小題5分)
1.下列說法只不正確的是()
(A)正弦函數(shù)、余弦函數(shù)的定義域是R,值域是[-1,1];
(B)余弦函數(shù)當(dāng)且僅當(dāng)x=2kπ(k∈Z)時,取得最大值1;
(C)余弦函數(shù)在[2kπ+,2kπ+](k∈Z)上都是減函數(shù);
(D)余弦函數(shù)在[2kπ-π,2kπ](k∈Z)上都是減函數(shù)
2.函數(shù)f(x)=sinx-|sinx|的值域為()
(A){0}(B)[-1,1](C)[0,1](D)[-2,0]
3.若a=sin460,b=cos460,c=cos360,則a、b、c的大小關(guān)系是()
(A)cab(B)abc(C)acb(D)bca
4.對于函數(shù)y=sin(π-x),下面說法中正確的是()
(A)函數(shù)是周期為π的奇函數(shù)(B)函數(shù)是周期為π的偶函數(shù)
(C)函數(shù)是周期為2π的奇函數(shù)(D)函數(shù)是周期為2π的偶函數(shù)
5.函數(shù)y=2cosx(0≤x≤2π)的圖象和直線y=2圍成一個封閉的平面圖形,則這個封閉圖形的面積是()
(A)4(B)8(C)2π(D)4π
*6.為了使函數(shù)y=sinωx(ω0)在區(qū)間[0,1]是至少出現(xiàn)50次最大值,則的最小值是()(A)98π(B)π(C)π(D)100π
二.填空題(每小題5分)
7.(20xx江蘇,1)f(x)=cos(x-)最小正周期為,其中>0,則=.
8.函數(shù)y=cos(sinx)的奇偶性是.
9.函數(shù)f(x)=lg(2sinx+1)+的定義域是;
10.關(guān)于x的方程cos2x+sinx-a=0有實數(shù)解,則實數(shù)a的最小值是.
三.解答題(每小題10分)
11..已知函數(shù)f(x)=,求它的定義域和值域,并判斷它的奇偶性.
12.已知函數(shù)y=f(x)的定義域是[0,],求函數(shù)y=f(sin2x)的定義域.
13.已知函數(shù)f(x)=sin(2x+φ)為奇函數(shù),求φ的值.
14.已知y=a-bcos3x的最大值為,最小值為,求實數(shù)a與b的值.
15求下列函數(shù)的值域:
(1)y=;
(2)y=sinx+cosx+sinxcosx;
(3)y=2cos+2cosx.
四、課后反思:通過本節(jié)課的學(xué)習(xí)你有哪些收獲?
高中函數(shù)教案14
今天我說課的課題是《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務(wù)教育課程標準實驗教科書。
根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個方面加以說明。
一、教材的地位和作用
本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識的基礎(chǔ)上,對直角三角形邊角關(guān)系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎(chǔ),也是高中進一步研究三角函數(shù)、反三角函數(shù)、三角方程的工具性內(nèi)容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。
2、學(xué)情分析
從學(xué)生的年齡特征和認知特征來看:
九年級學(xué)生的思維活躍,接受能力較強,具備了一定的數(shù)學(xué)探究活動經(jīng)歷和應(yīng)用數(shù)學(xué)的意識。
從學(xué)生已具備的知識和技能來看:
九年級學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)
從心理特征來看:初三學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學(xué)生有待于提高的知識和技能來看:
學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進一步體會數(shù)學(xué)知識之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明了,深入淺出的剖析。
3、教學(xué)重、難點
根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:理解正弦函數(shù)意義,并會求銳角的正弦值。
難點確定為:根據(jù)銳角的正弦值及一邊,求直角三角形的其他邊長。
二、教學(xué)目標分析
新課標指出,教學(xué)目標應(yīng)從知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應(yīng)是緊密聯(lián)系的一個完整的整體,學(xué)生學(xué)知識技能的過程同時成為學(xué)會學(xué)習(xí),形成正確價值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,我將四個目標進行整合,確定本節(jié)課的教學(xué)目標為:
1。理解銳角正弦的意義,并會求銳角的正弦值;
2。初步了解銳角正弦取值范圍及增減性;
3。掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;
4。經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生觀察分析、類比歸納的探究問題的能力;
5。通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的合理性和嚴謹性,使學(xué)生養(yǎng)成積極思考,獨立思考的好習(xí)慣,并且同時培養(yǎng)學(xué)生的團隊合作精神。
三、教學(xué)方法和學(xué)法分析
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生流出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
本節(jié)課的教法采用的是情境引導(dǎo)和探究發(fā)現(xiàn)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評價,不斷激發(fā)學(xué)生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構(gòu)過程,并運用數(shù)學(xué)知識解決實際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。
本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。
四、教學(xué)過程
新課標指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):
(一)自主探究
1、復(fù)習(xí)舊知,溫故知新
1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B= 0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=
設(shè)計意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習(xí)情境。
2、創(chuàng)設(shè)情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望‘
通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)———
(二)自主合作
1、發(fā)現(xiàn)問題,探求新知(要求學(xué)生獨立思考后小組內(nèi)合作探究)
1、(播放綠化荒山的視頻)課本P74問題與思考,求的值
2、課本P75思考:求的值
設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導(dǎo)學(xué)生歸納。
2、分析思考,加深理解
1、課本P75探索,問:與有什么關(guān)系?你能解釋嗎?
2、正弦函數(shù)定義:在Rt△ABC中,∠C=900,把銳角A的'對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=
對定義的幾點說明:
1、sinA是一個完整的符號,表示∠A的正切習(xí)慣上省略“∠”的符號。
2、本章我們只研究銳角∠A的正弦。
3、sinA的范圍:0
設(shè)計意圖:數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)概念要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等),通過對銳角正弦定義闡述,使學(xué)生的認知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點。
通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生引入到下一環(huán)節(jié)。
(三)自主展示(強化訓(xùn)練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據(jù)圖中數(shù)據(jù)
求sinA和sinB
2、判斷對錯(學(xué)生口答)
(1)若銳角∠A=∠B,則sinA=sinB ( )
(2)sin600=sin300+sin300 ( )
3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值( )
A。擴大100倍B。縮小100倍C。不變D。不確定
4、如圖,平面直角坐標系中點P(3,— 4),OP與x軸的夾角為∠1,求sin∠1的值。
設(shè)計意圖:幾道例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。
(四)自主拓展(提高升華)
1、課本習(xí)題28。1第1、2、題;
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。總的設(shè)計意圖是反饋教學(xué),鞏固提高。
(五)自主評價(小結(jié)歸納,拓展深化)
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:
①通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;
②通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;
③通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設(shè)計以下問題加以追問:
1、sinA能為負嗎?
2、比較sin450和sin300的大小?
設(shè)計要求:(1)先學(xué)生獨立思考后小組內(nèi)探究
(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評價。
設(shè)計意圖:
(1)有一定難度需要學(xué)生進行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣。
(2)學(xué)生通過互評自評,可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長和進步,同時促進學(xué)生對學(xué)習(xí)及時進行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進教學(xué),實施因材施教提供重要依據(jù)。我的說課到此結(jié)束,敬請各位老師批評、指正,謝謝!
教學(xué)反思
1。本教學(xué)設(shè)計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗知識間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。
2。在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的引導(dǎo)作用,對學(xué)生的主體意識和合作交流的能力起著積極作用。
3。正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
高中函數(shù)教案15
補充,已知:f(x)是定義在[-1,1]上的增函數(shù),且f(x-1)f(x2-1),求x的取值范圍.
相關(guān)推薦
2.3函數(shù)的單調(diào)性(第三課時)
2.3函數(shù)的單調(diào)性(第三課時)
教學(xué)目的:函數(shù)單調(diào)性的應(yīng)用
重點難點:含參問題的討論,抽象函數(shù)問題.
教學(xué)過程
一、復(fù)習(xí)引入函數(shù)單調(diào)性的概念,復(fù)合函數(shù)的單調(diào)性.
二、例題.
例1.如果二次函數(shù)在區(qū)間內(nèi)是增函數(shù),求f(2)的取值范圍.
分析:由于f(2)=22-(a-1)×2+5=-2a+11,f(2)的取值范圍即一次函數(shù)y=-2a+11的值域,固應(yīng)先求其定義域.
例2.設(shè)y=f(x)在R上是單調(diào)函數(shù),試證方程f(x)=0在R上至多有一個實數(shù)根.
分析:根據(jù)函數(shù)的單調(diào)性,用反證法證明.
例3.設(shè)f(x)的定義域為,且在上的增函數(shù),(1)求證f(1)=0;f(xy)=f(x)+f(y);
(2)若f(2)=1,解不等式
分析:利用f(x)的性質(zhì),脫去函數(shù)的符號,將問題化為解一般的不等式;注意,2=1+1=f(2)+f(2)=f(4).
例4.已知函數(shù).
(1)當(dāng)時,求函數(shù)f(x)的最小值;
(2)若對任意恒成立,試求實數(shù)a的取值范圍.
分析:(1)利用f(x)的單調(diào)性即可求最小值;
(2)利用函數(shù)的性質(zhì)分類討論解之.
例5.求函數(shù)的單調(diào)區(qū)間.
分析:利用復(fù)合函數(shù)的單調(diào)性解題.
令即函數(shù)的定義域為[-3,1];
再根據(jù)復(fù)合函數(shù)的單調(diào)性求出其單調(diào)區(qū)間.
三、作業(yè):《精析精練》P73智能達標訓(xùn)練.
函數(shù)的單調(diào)性
一名合格的教師要充分考慮學(xué)習(xí)的趣味性,作為高中教師就需要提前準備好適合自己的教案。教案可以讓學(xué)生能夠在課堂積極的參與互動,幫助高中教師有計劃有步驟有質(zhì)量的完成教學(xué)任務(wù)。你知道如何去寫好一份優(yōu)秀的高中教案呢?為了讓您在使用時更加簡單方便,下面是小編整理的“函數(shù)的單調(diào)性”,僅供您在工作和學(xué)習(xí)中參考。
數(shù)學(xué)必修1:函數(shù)的單調(diào)性
教學(xué)目標:理解函數(shù)的單調(diào)性
教學(xué)重點:函數(shù)單調(diào)性的概念和判定
教學(xué)過程:
1、過對函數(shù)、、及的觀察提出有關(guān)函數(shù)單調(diào)性的問題.
2、閱讀教材明確單調(diào)遞增、單調(diào)遞減和單調(diào)區(qū)間的概念
3、
例1、如圖是定義在閉區(qū)間[-5,5]上的函數(shù)的圖象,根據(jù)圖象說出的單調(diào)區(qū)間,及在每一單調(diào)區(qū)間上,是增函數(shù)還是減函數(shù)。
解:函數(shù)的單調(diào)區(qū)間有,其中在區(qū)間,上是減函數(shù),在區(qū)間上是
增函數(shù)。
注意:1單調(diào)區(qū)間的書寫
2各單調(diào)區(qū)間之間的關(guān)系
以上是通過觀察圖象的.方法來說明函數(shù)在某一區(qū)間的單調(diào)性,是一種比較粗略的方法,那么,對于任給函數(shù),我們怎樣根據(jù)增減函數(shù)的定義來證明它的單調(diào)性呢?
例2、證明函數(shù)在R上是增函數(shù)。
證明:設(shè)是R上的任意兩個實數(shù),且,則
,所以,在R上是增函數(shù)。
例3、證明函數(shù)在上是減函數(shù)。
證明:設(shè)是上的任意兩個實數(shù),且,則
由,得,且
于是
所以,在上是減函數(shù)。
利用定義證明函數(shù)單調(diào)性的步驟:
(1)取值
(2)計算、
(3)對比符號
(4)結(jié)論
課堂練習(xí):教材第50頁練習(xí)A、B
小結(jié):本節(jié)課學(xué)習(xí)了單調(diào)遞增、單調(diào)遞減和單調(diào)區(qū)間的概念及判定方法
課后作業(yè):第57頁習(xí)題2-1A第5題
§1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(1課時)
一名優(yōu)秀的教師在教學(xué)時都會提前最好準備,準備好一份優(yōu)秀的教案往往是必不可少的。教案可以讓學(xué)生更好地進入課堂環(huán)境中來,幫助授課經(jīng)驗少的高中教師教學(xué)。高中教案的內(nèi)容具體要怎樣寫呢?以下是小編為大家收集的“§1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(1課時)”相信您能找到對自己有用的內(nèi)容。
§1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(1課時)
【學(xué)情分析】:
高一學(xué)過了函數(shù)的單調(diào)性,在引入導(dǎo)數(shù)概念與幾何意義后,發(fā)現(xiàn)導(dǎo)數(shù)是描述函數(shù)在某一點的瞬時變化率。在此基礎(chǔ)上,我們發(fā)現(xiàn)導(dǎo)數(shù)與函數(shù)的增減性以及增減的快慢都有很緊密的聯(lián)系。本節(jié)內(nèi)容就是通過對函數(shù)導(dǎo)數(shù)計算,來判定可導(dǎo)函數(shù)增減性。
【教學(xué)目標】:
(1)正確理解利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性的原理;
(2)掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法
(3)能夠利用導(dǎo)數(shù)解釋實際問題中的函數(shù)單調(diào)性
【教學(xué)重點】:
利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間
【教學(xué)過程設(shè)計】:
教學(xué)環(huán)節(jié)教學(xué)活動設(shè)計意圖
情景引入過程
從高臺跳水運動員的高度h隨時間t變化的函數(shù):
分析運動動員的運動過程:
上升→最高點→下降
運動員瞬時速度變換過程:
減速→0→加速從實際問題中物理量入手
學(xué)生容易接受
實際意義向函數(shù)意義過渡從函數(shù)的角度分析上述過程:
先增后減
由正數(shù)減小到0,再由0減小到負數(shù)
將實際的量與函數(shù)及其導(dǎo)數(shù)意義聯(lián)系起來,過渡自然,突破理解障礙
引出函數(shù)單調(diào)性與導(dǎo)數(shù)正負的關(guān)系通過上述實際例子的分析,聯(lián)想觀察其他函數(shù)的單調(diào)性與其導(dǎo)數(shù)正負的關(guān)系
進一步的函數(shù)單調(diào)性與導(dǎo)數(shù)正負驗證,加深兩者之間的關(guān)系
我們能否得出以下結(jié)論:
在某個區(qū)間(a,b)內(nèi),如果,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減
答案是肯定的
從導(dǎo)數(shù)的概念給出解釋表明函數(shù)在此點處的切線斜率是由左下向右上,因此在附近單調(diào)遞增
表明函數(shù)在此點處的切線斜率是由左上向右下,因此在附近單調(diào)遞減
所以,若,則,f(x)為增函數(shù)
同理可說明時,f(x)為減函數(shù)
用導(dǎo)數(shù)的幾何意義理解導(dǎo)數(shù)正負與單調(diào)性的內(nèi)在關(guān)系,幫助理解與記憶
導(dǎo)數(shù)正負與函數(shù)單調(diào)性總結(jié)若y=f(x)在區(qū)間(a,b)上可導(dǎo),則
(1)在(a,b)內(nèi),y=f(x)在(a,b)單調(diào)遞增
(2)在(a,b)內(nèi),y=f(x)在(a,b)單調(diào)遞減
抽象概括我們的心法手冊(用以指導(dǎo)我們拆解題目)
例題精講1、根據(jù)導(dǎo)數(shù)正負判斷函數(shù)單調(diào)性
教材例1在教學(xué)環(huán)節(jié)中的處理方式:
以學(xué)生的自學(xué)為主,可以更改部分數(shù)據(jù),讓學(xué)生動手模仿。
小結(jié):導(dǎo)數(shù)的正負→函數(shù)的增減→構(gòu)建函數(shù)大致形狀
提醒學(xué)生觀察的點的圖像特點(為下節(jié)埋下伏筆)
丟出思考題:“”的點是否一定對應(yīng)函數(shù)的最值(由于學(xué)生尚未解除“極值”的概念,暫時還是以最值代替)例題處理的目標就是為達到將“死結(jié)論”變成“活套路”
2、利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性以及計算求函數(shù)單調(diào)區(qū)間
教材例2在教學(xué)環(huán)節(jié)中的處理方式:
可以先以為例回顧我們高一判斷函數(shù)單調(diào)性的定義法;再與我們導(dǎo)數(shù)方法形成對比,體會導(dǎo)數(shù)方法的優(yōu)越性。
引導(dǎo)學(xué)生逐步貫徹落實我們之前準備的“心法手冊”
判斷單調(diào)性→計算導(dǎo)數(shù)大小→能否判斷導(dǎo)數(shù)正負
→Y,得出函數(shù)單調(diào)性;
→N,求“導(dǎo)數(shù)大于(小于)0”的不等式的解集→得出單調(diào)區(qū)間
補充例題:
已知函數(shù)y=x+,試討論出此函數(shù)的單調(diào)區(qū)間.
解:y′=(x+)′=1-1x-2=
令>0.解得x>1或x<-1.
∴y=x+的單調(diào)增區(qū)間是(-∞,-1)和(1,+∞).
令<0,解得-1<x<0或0<x<1.
∴y=x+的單調(diào)減區(qū)間是(-1,0)和(0,1)
要求根據(jù)函數(shù)單調(diào)性畫此函數(shù)的草圖
3、實際問題中利用導(dǎo)數(shù)意義判斷函數(shù)圖像
教材例3的處理方式:
可以根據(jù)課程進度作為課堂練習(xí)處理
同時還可以引入類似的練習(xí)補充(如學(xué)生上學(xué)路上,距離學(xué)校的路程與時間的函數(shù)圖像)
堂上練習(xí)教材練習(xí)2——由函數(shù)圖像寫函數(shù)導(dǎo)數(shù)的正負性
教材練習(xí)1——判斷函數(shù)單調(diào)性,計算單調(diào)區(qū)間針對教材的三個例題作知識強化練習(xí)
內(nèi)容總結(jié)體會導(dǎo)數(shù)在判斷函數(shù)單調(diào)性方面的極大優(yōu)越性體會學(xué)習(xí)導(dǎo)數(shù)的重要性
課后練習(xí):
1、函數(shù)的遞增區(qū)間是()
ABCD
答案C對于任何實數(shù)都恒成立
2、已知函數(shù)在上是單調(diào)函數(shù),則實數(shù)的
取值范圍是()
AB
CD
答案B在恒成立,3、函數(shù)單調(diào)遞增區(qū)間是()
ABCD
答案C令
4、對于上可導(dǎo)的任意函數(shù),若滿足,則必有()
AB
CD
答案C當(dāng)時,函數(shù)在上是增函數(shù);當(dāng)時,在上是減函數(shù),故當(dāng)時取得最小值,即有
得
5、函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為___________________
答案
6、函數(shù)的單調(diào)遞增區(qū)間是___________________________
答案
7、已知的圖象經(jīng)過點,且在處的切線方程是
(1)求的解析式;(2)求的單調(diào)遞增區(qū)間
解:(1)的圖象經(jīng)過點,則,切點為,則的圖象經(jīng)過點
得
(2)
單調(diào)遞增區(qū)間為
函數(shù)單調(diào)性
年級高一
學(xué)科數(shù)學(xué)
課題
【高中函數(shù)教案】相關(guān)文章:
高中函數(shù)知識總結(jié)07-30
《函數(shù)的概念》教案06-25
高中數(shù)學(xué)函數(shù)的教學(xué)論文08-16
函數(shù)奇偶性教案02-15
二次函數(shù)教案08-28
一次函數(shù)教案07-07
分段函數(shù)04-01