国产欧美日韩在线观看一区二区,欧美乱码精品一区二区三区,国产粉嫩高中无套进入,中文在线天堂网www

教案

函數數學教案

時間:2022-07-22 08:51:33 教案 我要投稿
  • 相關推薦

函數數學教案

  作為一位杰出的教職工,常常需要準備教案,教案有助于學生理解并掌握系統的知識。來參考自己需要的教案吧!下面是小編幫大家整理的函數數學教案,歡迎大家借鑒與參考,希望對大家有所幫助。

函數數學教案

函數數學教案1

  學習目標:

  (1)理解函數的概念

  (2)會用集合與對應語言來刻畫函數,

  (3)了解構成函數的要素。

  重點:

  函數概念的理解

  難點

  函數符號y=f(x)的理解

  知識梳理:

  自學課本P29—P31,填充以下空格。

  1、設集合A是一個非空的實數集,對于A內 ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合A上的一個函數,記作 。

  2、對函數 ,其中x叫做 ,x的取值范圍(數集A)叫做這個函數的 ,所有函數值的集合 叫做這個函數的 ,函數y=f(x) 也經常寫為 。

  3、因為函數的值域被 完全確定,所以確定一個函數只需要

  。

  4、依函數定義,要檢驗兩個給定的變量之間是否存在函數關系,只要檢驗:

  ① ;② 。

  5、設a, b是兩個實數,且a

  (1)滿足不等式 的實數x的集合叫做閉區間,記作 。

  (2)滿足不等式a

  (3)滿足不等式 或 的實數x的集合叫做半開半閉區間,分別表示為 ;

  分別滿足x≥a,x>a,x≤a,x

  其中實數a, b表示區間的兩端點。

  完成課本P33,練習A 1、2;練習B 1、2、3。

  例題解析

  題型一:函數的概念

  例1:下圖中可表示函數y=f(x)的圖像的只可能是( )

  練習:設M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數關系的有____個。

  題型二:相同函數的判斷問題

  例2:已知下列四組函數:① 與y=1 ② 與y=x ③ 與

  ④ 與 其中表示同一函數的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  練習:已知下列四組函數,表示同一函數的是( )

  A. 和 B. 和

  C. 和 D. 和

  題型三:函數的定義域和值域問題

  例3:求函數f(x)= 的定義域

  練習:課本P33練習A組 4.

  例4:求函數 , ,在0,1,2處的函數值和值域。

  當堂檢測

  1、下列各組函數中,表示同一個函數的是( A )

  A、 B、

  C、 D、

  2、已知函數 滿足f(1)=f(2)=0,則f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、給出下列四個命題:

  ① 函數就是兩個數集之間的.對應關系;

  ② 若函數的定義域只含有一個元素,則值域也只含有一個元素;

  ③ 因為 的函數值不隨 的變化而變化,所以 不是函數;

  ④ 定義域和對應關系確定后,函數的值域也就確定了.

  其中正確的有( B )

  A. 1 個 B. 2 個 C. 3個 D. 4 個

  4、下列函數完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四個圖形中,不能表示函數的圖象的是 ( B )

  6、設 ,則 等于 ( D )

  A. B. C. 1 D.0

  7、已知函數 ,求 的值.( )

函數數學教案2

  一、教材分析:

  《34.4二次函數的應用》選自義務教育課程標準試驗教科書《數學》(冀教版)九年級上冊第三十四章第四節,這節課是在學生學習了二次函數的概念、圖象及性質的基礎上,讓學生繼續探索二次函數與一元二次方程的關系,教材通過小球飛行這樣的實際情境,創設三個問題,這三個問題對應了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學生結合問題實際意義就能對二次函數與一元二次方程的關系有很好的體會;從而得出用二次函數的圖象求一元二次方程的方法。這也突出了課標的要求:注重知識與實際問題的聯系。

  本節教學時間安排1課時

  二、教學目標:

  知識技能:

  1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.

  2.理解拋物線交x軸的點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.

  3.能夠利用二次函數的圖象求一元二次方程的近似根。

  數學思考:

  1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的探索能力和創新精神.

  2.經歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.

  3.通過觀察二次函數圖象與x軸的`交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想。

  解決問題:

  1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性。

  2.通過利用二次函數的圖象估計一元二次方程的根,進一步掌握二次函數圖象與x軸的交點坐標和一元二次方程的根的關系,提高估算能力。

  情感態度:

  1.從學生感興趣的問題入手,讓學生親自體會學習數學的價值,從而提高學生學習數學的好奇心和求知欲。

  2.通過學生共同觀察和討論,培養大家的合作交流意識。

  三、教學重點、難點:

  教學重點:

  1.體會方程與函數之間的聯系。

  2.能夠利用二次函數的圖象求一元二次方程的近似根。

  教學難點:

  1.探索方程與函數之間關系的過程。

  2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系。

  四、教學方法:啟發引導 合作交流

  五:教具、學具:課件

  六、教學過程:

  [活動1] 檢查預習 引出課題

  預習作業:

  1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.

  2. 回顧一次函數與一元一次方程的關系,利用函數的圖象求方程3x-4=0的解.

  師生行為:教師展示預習作業的內容,指名回答,師生共同回顧舊知,教師做出適當總結和評價。

  教師重點關注:學生回答問題結論準確性,能否把前后知識聯系起來,2題的格式要規范。

  設計意圖:這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數式的變式,這三個方程把二次方程的根的三種情況體現出來,讓學生回顧二次方程的相關知識;2題是一次函數與一元一次方程的關系的問題,這題的設計是讓學生用學過的熟悉的知識類比探究本課新知識。

  [活動2] 創設情境 探究新知

  問題

  1. 課本P94 問題.

  2. 結合圖形指出,為什么有兩個時間球的高度是15m或0m?為什么只在一個時間球的高度是20m?

  3. 結合預習題1,完成課本P94 觀察中的題目。

  師生行為:教師提出問題1,給學生獨立思考的時間,教師可適當引導,對學生的解題思路和格式進行梳理和規范;問題2學生獨立思考指名回答,注重數形結合思想的滲透;問題3是由學生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導學生總結歸納出正確結論。

  二次函數y=ax2+bx+c的圖象和x軸交點的坐標與一元二次方程ax2+bx+c=0的根有什么關系?

  教師重點關注:

  1.學生能否把實際問題準確地轉化為數學問題;

  2.學生在思考問題時能否注重數形結合思想的應用;

  3.學生在探究問題的過程中,能否經歷獨立思考、認真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準確。

  設計意圖:由現實中的實際問題入手給學生創設熟悉的問題情境,促使學生能積極地參與到數學活動中去,體會二次函數與實際問題的關系;學生通過小組合作分析、交流,探求二次函數與一元二次方程的關系,培養學生的合作精神,積累學習經驗。

  [活動3] 例題學習 鞏固提高

  問題

  例 利用函數圖象求方程x2-2x-2=0的實數根(精確到0.1).

  師生行為:教師提出問題,引導學生根據預習題2獨立完成,師生互相訂正。

  教師關注:(1)學生在解題過程中格式是否規范;(2)學生所畫圖象是否準確,估算方法是否得當。

  設計意圖:通過預習題2的鋪墊,同學們已經從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。

  [活動4] 練習反饋 鞏固新知

函數數學教案3

  教學目標

  1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.

  (1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

  (2)能從數和形兩個角度認識單調性和奇偶性.

  (3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.

  2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.

  3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.

  教學建議

  一、知識結構

  (1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.

  (2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

  二、重點難點分析

  (1)本節教學的重點是函數的.單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.

  (2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.

  三、教法建議

  (1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.

  (2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.

  函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.

函數數學教案4

  教學目標:

  知識目標:

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

  2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

  3、會對一個具體實例進行概括抽象成為數學問題。

  能力目標:

  1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

  2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

  情感目標:

  1、經歷函數概念的抽象概括過程,體會函數的模型思想。

  2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

  教學重點:

  掌握函數概念。

  判斷兩個變量之間的關系是否可看作函數。

  能把實際問題抽象概括為函數問題。

  教學難點:

  理解函數的概念。

  能把實際問題抽象概括為函數問題。

  教學過程設計:

  一、創設問題情境,導入新課

  『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

  『生』:摩天輪。

  『師』:你們坐過嗎?

  ……

  『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?

  『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

  『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

  大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

  t/分 0 1 2 3 4 5 …… h/米

  t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

  『師』:對于給定的時間t,相應的高度h確定嗎?

  『生』:確定。

  『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

  『生』:研究的'對象有兩個,是時間t和高度h。

  『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

  二、新課學習

  做一做

  (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?

  填寫下表:

  層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

  『生』:變量有兩個,是層數與圓圈總數。

  (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

  ①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

  ②給定一個V值,你能求出相應的S值嗎?

  解:略

  議一議

  『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

  『生』:相同點是:這三個問題中都研究了兩個變量。

  不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

  『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

  函數的概念

  在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

  一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

  三、隨堂練習

  書P152頁 隨堂練習1、2、3

  四、本課小結

  初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。

  在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。

  函數的三種表達式:

  圖象;(2)表格;(3)關系式。

  五、探究活動

  為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?

  (答案:Y=1.8x-6或)

  六、課后作業

  習題6.1

函數數學教案5

  〖大綱要求〗

  1. 理解二次函數的概念;

  2. 會把二次函數的一般式化為頂點式,確定圖象的頂點坐標、對稱軸和開口方向,會用描點法畫二次函數的圖象;

  3. 會平移二次函數y=ax2(a≠0)的圖象得到二次函數y=a(ax+m)2+k的圖象,了解特殊與一般相互聯系和轉化的思想;

  4. 會用待定系數法求二次函數的解析式;

  5. 利用二次函數的圖象,了解二次函數的增減性,會求二次函數的圖象與x軸的交點坐標和函數的最大值、最小值,了解二次函數與一元二次方程和不等式之間的聯系,數學教案-二次函數。

  內容

  (1)二次函數及其圖象

  如果y=ax2+bx+c(a,b,c是常數,a≠0),那么,y叫做x的二次函數。

  二次函數的圖象是拋物線,可用描點法畫出二次函數的圖象。

  (2)拋物線的頂點、對稱軸和開口方向

  拋物線y=ax2+bx+c(a≠0)的頂點是 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  20.某幢建筑物,從10米高的窗口A用水管和向外噴水,噴的水流呈拋物線(拋物線所在平面與墻面垂直,(如圖)如果拋物線的最高點M離墻1米,離地面米,則水流下落點B離墻距離OB是( )

  (A)2米 (B)3米 (C)4米 (D)5米

  三.解答下列各題(21題6分,22----25每題4分,26-----28每題6分,共40分)

  21.已知:直線y=x+k過點A(4,-3)。(1)求k的值;(2)判斷點B(-2,-6)是否在這條直線上;(3)指出這條直線不過哪個象限。

  22.已知拋物線經過A(0,3),B(4,6)兩點,對稱軸為x=,

  (1) 求這條拋物線的解析式;

  (2) 試證明這條拋物線與X軸的兩個交點中,必有一點C,使得對于x軸上任意一點D都有AC+BC≤AD+BD。

  23.已知:金屬棒的長1是溫度t的一次函數,現有一根金屬棒,在O℃時長度為200cm,溫度提高1℃,它就伸長0.002cm。

  (1) 求這根金屬棒長度l與溫度t的函數關系式;

  (2) 當溫度為100℃時,求這根金屬棒的長度;

  (3) 當這根金屬棒加熱后長度伸長到201.6cm時,求這時金屬棒的溫度。

  24.已知x1,x2,是關于x的方程x2-3x+m=0的兩個不同的實數根,設s=x12+x22

  (1) 求S關于m的解析式;并求m的取值范圍;

  (2) 當函數值s=7時,求x13+8x2的值;

  25.已知拋物線y=x2-(a+2)x+9頂點在坐標軸上,求a的值。

  26、如圖,在直角梯形ABCD中,∠A=∠D=Rt∠,截取AE=BF=DG=x,已知AB=6,CD=3,AD=4,求:

  (1) 四邊形CGEF的面積S關于x的函數表達式和X的取值范圍;

  (2) 當x為何值時,S的數值是x的4倍。

  27、國家對某種產品的稅收標準原定每銷售100元需繳稅8元(即稅率為8%),臺洲經濟開發區某工廠計劃銷售這種產品m噸,每噸2000元。國家為了減輕工人負擔,將稅收調整為每100元繳稅(8-x)元(即稅率為(8-x)%),這樣工廠擴大了生產,實際銷售比原計劃增加2x%。

  (1) 寫出調整后稅款y(元)與x的函數關系式,指出x的取值范圍;

  (2) 要使調整后稅款等于原計劃稅款(銷售m噸,稅率為8%)的78%,求x的值.

  28、已知拋物線y=x2+(2-m)x-2m(m≠2)與y軸的交點為A,與x軸的交點為B,C(B點在C點左邊)

  (1) 寫出A,B,C三點的坐標;

  (2) 設m=a2-2a+4試問是否存在實數a,使△ABC為Rt△?若存在,求出a的值,若不存在,請說明理由;

  (3) 設m=a2-2a+4,當∠BAC最大時,求實數a的值。

  習題2:

  一.填空(20分)

  1.二次函數=2(x - )2 +1圖象的對稱軸是 。

  2.函數y= 的自變量的取值范圍是 。

  3.若一次函數y=(m-3)x+m+1的圖象過一、二、四象限,則的取值范圍是 。

  4.已知關于的二次函數圖象頂點(1,-1),且圖象過點(0,-3),則這個二次函數解析式為 。

  5.若y與x2成反比例,位于第四象限的一點P(a,b)在這個函數圖象上,且a,b是方程x2-x -12=0的兩根,則這個函數的關系式 。

  6.已知點P(1,a)在反比例函數y= (k≠0)的圖象上,其中a=m2+2m+3(m為實數),則這個函數圖象在第 象限。

  7. x,y滿足等式x= ,把y寫成x的函數 ,其中自變量x的取值范圍是 。

  8.二次函數y=ax2+bx+c+(a 0)的圖象如圖,則點P(2a-3,b+2)

  在坐標系中位于第 象限

  9.二次函數y=(x-1)2+(x-3)2,當x= 時,達到最小值 。

  10.拋物線y=x2-(2m-1)x- 6m與x軸交于(x1,0)和(x2,0)兩點,已知x1x2=x1+x2+49,要使拋物線經過原點,應將它向右平移 個單位。

  二.選擇題(30分)

  11.拋物線y=x2+6x+8與y軸交點坐標( )

  (A)(0,8) (B)(0,-8) (C)(0,6) (D)(-2,0)(-4,0)

  12.拋物線y=- (x+1)2+3的頂點坐標( )

  (A)(1,3) (B)(1,-3) (C)(-1,-3) (D)(-1,3)

  13.如圖,如果函數y=kx+b的圖象在第一、二、三象限,那么函數y=kx2+bx-1的圖象大致是( )

  14.函數y= 的自變量x的取值范圍是( )

  (A)x 2 (B)x<2 x="">- 2且x 1 (D)x 2且x –1

  15.把拋物線y=3x2先向上平移2個單位,再向右平移3個單位,所得拋物線的解析式是( )

  (A)=3(x+3)2 -2 (B)=3(x+2)2+2 (C)=3(x-3)2 -2 (D)=3(x-3)2+2

  16.已知拋物線=x2+2mx+m -7與x軸的.兩個交點在點(1,0)兩旁,則關于x的方程 x2+(m+1)x+m2+5=0的根的情況是( )

  (A)有兩個正根 (B)有兩個負數根 (C)有一正根和一個負根 (D)無實根

  17.函數y=- x的圖象與圖象y=x+1的交點在( )

  (A) 第一象限 (B)第二象限 (C)第三象限 (D)第四象限

  18.如果以y軸為對稱軸的拋物線y=ax2+bx+c的圖象,如圖,

  則代數式b+c-a與0的關系( )

  (A)b+c-a=0 (B)b+c-a>0 (C)b+c-a<0 (D)不能確定

  19.已知:二直線y=- x +6和y=x - 2,它們與y軸所圍成的三角形的面積為( )

  (A)6 (B)10 (C)20 (D)12

  20.某學生從家里去學校,開始時勻速跑步前進,跑累了后,再勻速步行余下的路程,初中數學教案《數學教案-二次函數》。下圖所示圖中,橫軸表示該生從家里出發的時間t,縱軸表示離學校的路程s,則路程s與時間t之間的函數關系的圖象大致是( )

  三.解答題(21~23每題5分,24~28每題7分,共50分)

  21.已知拋物線y=ax2+bx+c(a 0)與x軸的兩交點的橫坐標分別是-1和3,與y軸交點的縱坐標是- ;

  (1)確定拋物線的解析式;

  (2)用配方法確定拋物線的開口方向,對稱軸和頂點坐標。

  22、如圖拋物線與直線 都經過坐標軸的正半軸上A,B兩點,該拋物線的對稱軸x=—1,與x軸交于點C,且∠ABC=90°求:

  (1)直線AB的解析式;

  (2)拋物線的解析式。

  23、某商場銷售一批名脾襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當的降價措施.經調查發現每件襯衫降價1元, 商場平均每天可多售出2件:

  (1)若商場平均每天要盈利1200元,每件襯衫要降價多少元,

  (2)每件襯衫降價多少元時,商場平均每天盈利最多?

  24、已知:二次函數 和 的圖象都經過x軸上兩個不同的點M、N,求a、b的值。

  25、如圖,已知⊿ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A的坐標為{—1,0),求

  (1)B,C,D三點的坐標;

  (2)拋物線 經過B,C,D三點,求它的解析式;

  (3)過點D作DE∥AB交過B,C,D三點的拋物線于E,求DE的長。

  26 某市電力公司為了鼓勵居民用電,采用分段計費的方法計算電費:每月用電不超100度

  時,按每度0.57元計費:每月用電超過100度時.其中的100度仍按原標準收費,超過部分按每度0.50元計費。

  (1)設月用電x度時,應交電費y元,當x≤100和x>100時,分別寫出y關于x的函數

  關系式;

  (1)求證;不論m取何值,拋物線與x軸必有兩個交點,并且有一個交點是A(2,0);

  (2)設拋物線與x軸的另一個交點為B,AB的長為d,求d與m之間的函數關系式;

  (3)設d=10,P(a,b)為拋物線上一點:

  ①當⊿ABP是直角三角形時,求b的值;

  ②當⊿ABP是銳角三角形,鈍角三角形時,分別寫出b的取值范圍(第2題不要求寫出過程)

  28、已知二次函數的圖象 與x軸的交點為A,B(點B在點A的右邊),與y軸的交點為C;

  (1)若⊿ABC為Rt⊿,求m的值;

  (1)在⊿ABC中,若AC=BC,求sin∠ACB的值;

  (3)設⊿ABC的面積為S,求當m為何值時,s有最小值.并求這個最小值。

函數數學教案6

  一、教材分析

  1、教材的地位和作用

  二次函數是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,在初中的學習中已經給出了二次函數的圖象及性質,學生已經基本掌握了二次函數的圖象及一些性質,只是研究函數的方法都是按照函數解析式---定義域----圖象----性質的方法進行的,基于這種情況,我認為本節課的作用是讓學生借助于熟悉的函數來進一步學習研究函數的更一般的方法,即:利用解析式分析性質來推斷函數圖象。它可以進一步深化學生對函數概念與性質的理解與認識,使學生得到較系統的函數知識和研究函數的方法,站在新的高度研究函數的性質與圖象。因此,本節課的內容十分重要。

  2、教學的重點和難點

  教學重點:使學生掌握二次函數的概念、性質和圖象;從函數的性質推斷圖象的方法。

  教學難點:掌握從函數的性質推斷圖象的方法。

  二、目標分析

  按照新課標指出三維目標,根據任教班級學生的實際情況,本節課我確定的教學目標是:

  1、知識與技能:掌握二次函數的性質與圖象,能夠借助于具體的二次函數,理解和掌握從函數的性質推斷圖象的方研究法。

  2、過程與方法:通過老師的引導、點撥,讓學生在分組合作、積極探索的氛圍中,掌握從函數解析式、性質出發去認識函數圖象的高度理解和研究函數的方法。

  3、情感、態度、價值觀:讓學生感受數學思想方法之美、體會數學思想方法之重要;培養學生主動學習、合作交流的意識等。

  三、教法學法分析

  遵循“教師的主導作用和學生的主體地位相統一的教學規律”,從教師的角色突出體現教師是設計者、組織者、引導者、合作者,經過教師對教材的分析理解,在教師的組織引導和師生互動過程中以問題為載體實施整個教學過程;在學生這方面,通過自主探索、合作交流、歸納方法等一系列活動為主線,感受知識的形成過程,拓展和完善自己的認知結構,進而體現出教學過程中教師與學生的雙主體作用。

  四、教學過程分析

  根據新課標的理念,我把整個的教學過程分為六個階段,即:創設情景、提出問題

  師生互動、探究新知

  獨立探究,鞏固方法

  強化訓練,加深理解

  小結歸納,拓展深化

  布置作業,提高升華

  環節1本節課一開始我就讓學生直接總結出二次函數的性質與圖象形狀,在學生回答后,以有必要再重復嗎?編者的失誤?還是另有用意呢?的設問來激發學生的求知欲,在學生感覺很疑惑的時候馬上進入環節2:試作出二次函數

  的圖象。目的是充分暴露學生在作圖時不能很好的結合函數的性質而出現的錯誤或偏差問題,突出本節課的重要性。在學生總結交流的基礎上教師指出學生的錯誤并以設問的方式提出本節課的目標:如何利用函數性質的研究來推斷出較為準確的函數圖象,進而引導學生進入師生互動、探究新知階段。

  在這個階段,我引用課本所給的例題1請同學們以學習小組為單位嘗試完成并作出總結發言。目的是:讓學生充分參與,在合作探究中讓學生最大限度地突破目標或暴露出在嘗試研究過程中出現的分析障礙,即不能很好的把握函數的性質對圖象的影響,不能把抽象的性質與直觀的圖象融會貫通,這樣便于教師在與學生互動的過程中準確把握難點,各個擊破,最終形成知識的遷移。在學生探討后,教師選小組代表做總結發言,其他小組作出補充,教師引導從逐步完善函數性質的分析。其中,學生對于對稱軸的確定、單調區間及單調性的分析闡述等可能存在困難。這時教師可以利用對解析式的分析結合多媒體演示引導學生得到分析的`思路和解決的方法,在師生互動的過程中把函數的性質完善。之后進入環節3:再次讓學生利用二次函數的性質推斷出二次函數的圖象,強化用二次函數的性質推斷圖象的關鍵。進而突破教學難點。讓學生真正實現知識的遷移,完成整個探究過程,形成較為完整的新的認知體系.當然,在這個過程中可能會有學生提出圖象為什么是曲線而不是直線等問題,為了消除學生的疑惑,進入第4個環節:教師要簡單說明這是研究函數要考慮的一個重要的性質,是函數的凹凸性,后面我們將要給大家介紹,同學們可以閱讀課本第110頁的探索與研究。這樣也給學生留下一個思考與探索的空間,培養學生課外閱讀、自主研究的能力,增強學生學習數學的積極性.

  在以上環節完成后,進入第5個環節:讓學生對利用解析式分析性質然后推斷函數圖象的研究過程進行梳理并加以提煉、抽象、概括,得出研究函數的具體操作過程,使問題得以升華,拓寬學生的思維,將新知識內化到自己的認知結構中去.最終尋求到解決問題的方法。

  教學的最終目標應該落實到每一個學生個體的內化與發展,由此讓引導學生進入獨立探究,鞏固方法的階段。例2在題目的設置上變換二次函數的開口方向,目的是一方面使學生加深對知識的理解,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力.學生在例1的基礎上將會目標明確地進行函數性質的研究,然后推斷出比較準確的函數圖象,使新知得到有效鞏固.

  通過前面三個階段的學習,學生應該基本掌握了本節課的相關知識。但對二次函數中系數a、b、c的對二次函數的影響還有待提高,為此我把課本中的例3進行改編,引導學生進入強化訓練,加深理解階段。一方面可以解決學生對奇偶性的質疑,另一方面也可以把學生對二次函數的認識提到新的高度。

  第五個階段:小結歸納,拓展深化。為了讓學生能夠站在更高的角度認識二次函數和掌握函數的一般研究方法,教師引導學生從兩個方面總結。在你對函數圖象與性質的關系有怎樣的理解方面教師要引導、拓展,明確今天所學習的方法實際上是研究函數性質圖象的一般方法,對于一些陌生的或較為復雜的函數只要借助于適當的方法得到相關的性質就可以推斷出函數的圖象,從而把學生的認知水平定格在一個新的高度去理解和認識函數問題。

  最后一個階段是布置作業,提高升華,作業的設置是分層落實.鞏固題讓學生復習解題思路,準確應用,以便舉一反三.探究題通過對教材例題的改編,供學有余力的學生自主探索,提高他們分析問題、解決問題的能力.

  以上六個階段環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動手操作,動眼觀察,動腦思考,親身經歷了知識的形成和發展過程,并得以遷移內化。而最終的探究作業又將激發學生興趣,帶領學生進入對二次函數更進一步的思考和研究之中,從而達到知識在課堂以外的延伸。總之,這節課是本著“授之以漁”而非“授之以魚”的理念來設計的。

函數數學教案7

  課型:

  復習課

  學習目標(學習重點):

  1. 針對函數及其圖象一章,查漏補缺,答疑解惑;

  2. 一次函數應用的復習.

  補充例題:

  例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系

  (1)B出發時與A相距 千米;

  (2)走了一段路后,自行車發生故障,進行修理,所用的時間是 小時;

  (3)B出發后 小時與A相遇;

  (4)求出A行走的路程S與時間t的函數關系式;

  (5)若B的自行車不發生故障,保持出發時的速度前進, 小時與A相遇,相遇點離B的出發點 千米,在圖中表示出這個相遇點C.

  例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.

  (1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;

  (2)若和諧點P(a,3)在直線y=-x+b(b為常數)上,求點a, b的值.

  例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數圖象的一部分.

  (1)求s與t之間的函數關系式.

  (2)與圖③相對應的P點的運動路徑是: ;P點出發 秒首次到達點B;

  (3)寫出當38時,y與s之間的函數關系式,并在圖③中補全函數圖象.

  課后續助:

  1.某市自來水公司為限制單位用水,每月只給某單位計劃內用水3000噸,計劃內用水每噸收費0.5元,超計劃部分每噸按0.8元收費.

  (1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數關系式

  ①用水量小于等于3000噸 ;②用水量大于3000噸 .

  (2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.

  (3)若某月該單位繳納水費1540元,則該單位用水多少噸?

  2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的`函數關系如圖所示.

  (1)有月租費的收費方式是 (填①或②),月租費是 元;

  (2)分別求出①、②兩種收費方式中y與自變量x之間的函數關系式;

  (3)請你根據用戶通訊時間的多少,給出經濟實惠的選擇建議.

  3.某氣象研究中心觀測一場沙塵暴從發生到結束全過程, 開始時風暴平均每小時增加2千米/時,4小時后,沙塵暴經過開闊荒漠地,風速變為平均每小時增加4千米/時,一段時間,風暴保持不變,當沙塵暴遇到綠色植被區時,其風速平均每小時減小1千米/時,最終停止。 結合風速與時間的圖像,回答下列問題:

  (1)在y軸( )內填入相應的數值;

  (2)沙塵暴從發生到結束,共經過多少小時?

  (3)求出當x25時,風速y(千米/時)與時間x(小時)之間的函數關系式.

  (4)若風速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續多長時間?

函數數學教案8

  本文題目:高一數學教案:函數的奇偶性

  課題:1.3.2函數的奇偶性

  一、三維目標:

  知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。

  過程與方法:通過設置問題情境培養學生判斷、推斷的能力。

  情感態度與價值觀:通過繪制和展示優美的函數圖象來陶冶學生的情操. 通過組織學生分組討論,培養學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養學生善于探索的思維品質。

  二、學習重、難點:

  重點:函數的奇偶性的概念。

  難點:函數奇偶性的判斷。

  三、學法指導:

  學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。

  四、知識鏈接:

  1.復習在初中學習的軸對稱圖形和中心對稱圖形的定義:

  2.分別畫出函數f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。

  五、學習過程:

  函數的.奇偶性:

  (1)對于函數 ,其定義域關于原點對稱:

  如果______________________________________,那么函數 為奇函數;

  如果______________________________________,那么函數 為偶函數。

  (2)奇函數的圖象關于__________對稱,偶函數的圖象關于_________對稱。

  (3)奇函數在對稱區間的增減性 ;偶函數在對稱區間的增減性 。

  六、達標訓練:

  A1、判斷下列函數的奇偶性。

  (1)f(x)=x4;(2)f(x)=x5;

  (3)f(x)=x+ (4)f(x)=

  A2、二次函數 ( )是偶函數,則b=___________ .

  B3、已知 ,其中 為常數,若 ,則

  _______ .

  B4、若函數 是定義在R上的奇函數,則函數 的圖象關于 ( )

  (A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對

  B5、如果定義在區間 上的函數 為奇函數,則 =_____ .

  C6、若函數 是定義在R上的奇函數,且當 時, ,那么當

  時, =_______ .

  D7、設 是 上的奇函數, ,當 時, ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數 ,則常數 ____ , _____ .

  七、學習小結:

  本節主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。

  八、課后反思:

函數數學教案9

  教學目標:

  1.使學生理解冪函數的概念,能夠通過圖象研究冪函數的性質;

  2.在作冪函數的圖象及研究冪函數的性質過程中,培養學生的觀察能力,概括總結的能力;

  3.通過對冪函數的研究,培養學生分析問題的能力.

  教學重點:

  常見冪函數的概念、圖象和性質;

  教學難點:

  冪函數的單調性及其應用.

  教學方法:

  采用師生互動的方式,由學生自我探索、自我分析,合作學習,充分發揮學生的積極性與主動性,教師利用實物投影儀及計算機輔助教學.

  教學過程:

  一、問題情境

  情境:我們以前學過這樣的函數:=x,=x2,=x1,試作出它們的圖象,并觀察其性質.

  問題:這些函數有什么共同特征?它們是指數函數嗎?

  二、數學建構

  1.冪函數的定義:一般的我們把形如=x(R)的函數稱為冪函數,其中底數x是變量,指數是常數.

  2.冪函數=x 圖象的`分布與 的關系:

  對任意的 R,=x在第I象限中必有圖象;

  若=x為偶函數,則=x在第II象限中必有圖象;

  若=x為奇函數,則=x在第III象限中必有圖象;

  對任意的 R,=x的圖象都不會出現在第VI象限中.

  3.冪函數的性質(僅限于在第一象限內的圖象):

  (1)定點:>0時,圖象過(0,0)和(1,1)兩個定點;

  ≤0時,圖象過只過定點(1,1).

  (2)單調性:>0時,在區間[0,+)上是單調遞增;

  <0時,在區間(0,+)上是單調遞減.

  三、數學運用

  例1 寫出下列函數的定義域,并判斷它們的奇偶性

  (1)= ; (2)= ;(3)= ;(4)= .

  例2 比較下列各題中兩個值的大小.

  (1)1.50.5與1.70.5 (2)3.141與π1

  (3)(-1.25)3與(-1.26)3(4)3 與2

  例3 冪函數=x;=xn;=x1與=x在第一象限內圖象的排列順序如圖所示,試判斷實數,n與常數-1,0,1的大小關系.

  練習:(1)下列函數:①=0.2x;②=x0.2;

  ③=x3;④=3x2.其中是冪函數的有 (寫出所有冪函數的序號).

  (2)函數 的定義域是 .

  (3)已知函數 ,當a= 時,f(x)為正比例函數;

  當a= 時,f(x)為反比例函數;當a= 時,f(x)為二次函數;

  當a= 時,f(x)為冪函數.

  (4)若a= ,b= ,c= ,則a,b,c三個數按從小到大的順序排列為 .

  四、要點歸納與方法小結

  1.冪函數的概念、圖象和性質;

  2.冪值的大小比較方法.

  五、作業

  課本P90-2,4,6.

函數數學教案10

  1.探究發現任意角 的終邊與 的終邊關于原點對稱;

  2.探究發現任意角 的終邊和 角的終邊與單位圓的交點坐標關于原點對稱;

  3.探究發現任意角 與 的三角函數值的關系.

  設計意圖

  首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進

  (四)練習

  利用誘導公式(二),口答下列三角函數值.

  (1). ;(2). ;(3). .

  喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.

  (五)問題變形

  由sin300= 出發,用三角的定義引導學生求出 sin(-300),sin1500值,讓學生聯想若已知sin = ,能否求出sin( ),sin( )的值.

  學生自主探究

  1.探究任意角 與 的三角函數又有什么關系;

  2.探究任意角 與 的三角函數之間又有什么關系.

  設計意圖

  遺忘的規律是先快后慢,過程的再現是深刻記憶的`重要途徑,在經歷思考問題-觀察發現-到一般化結論的探索過程,從特殊到一般,數形結合,學生對知識的理解與掌握以深入腦中,此時以類同問題的提出,大膽的放手讓學生分組討論,重現了探索的整個過程,加深了知識的深刻記憶,對學生無形中鼓舞了氣勢,增強了自信,加大了挑戰.而新知識點的自主探討,對教師駕馭課堂的能力也充滿了極大的挑戰.彼此相信,彼此信任,產生了師生的默契,師生共同進步.

  展示學生自主探究的結果

  誘導公式(三)、(四)

  給出本節課的課題

  三角函數誘導公式

  設計意圖

  標題的后出,讓學生在經歷整個探索過程后,還回味在探索,發現的成功喜悅中,猛然回頭,哦,原來知識點已經輕松掌握,同時也是對本節課內容的小結.

  (六)概括升華

  的三角函數值,等于 的同名函數值,前面加上一個把 看成銳角時原函數值的符合.(即:函數名不變,符號看象限.)

  設計意圖

  簡便記憶公式.

  (七)練習強化

  求下列三角函數的值:(1).sin( ); (2). cos(-20400).

  設計意圖

  本練習的設置重點體現一題多解,讓學生不僅學會靈活運用應用三角函數的誘導公式,還能養成靈活處理問題的良好習慣.這里還要給學生指出課本中的“負角”化為“正角”是針對具體負角而言的.

  學生練習

  化簡: .

  設計意圖

  重點加強對三角函數的誘導公式的綜合應用.

  (八)小結

  1.小結使用誘導公式化簡任意角的三角函數為銳角的步驟.

  2.體會數形結合、對稱、化歸的思想.

  3.“學會”學習的習慣.

  (九)作業

  1.課本p-27,第1,2,3小題;

  2.附加課外題 略.

  設計意圖

  加強學生對三角函數的誘導公式的記憶及靈活應用,附加題的設置有利于有能力的同學“更上一樓”.

  (十)板書設計:(略)

  八.課后反思

  對本節內容在進行教學設計之前,本人反復閱讀了課程標準和教材,針對教材的內容,編排了一系列問題,讓學生親歷知識發生、發展的過程,積極投入到思維活動中來,通過與學生的互動交流,關注學生的思維發展,在逐漸展開中,引導學生用已學的知識、方法予以解決,并獲得知識體系的更新與拓展,收到了一定的預期效果,尤其是練習的處理,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,感受“觀察——歸納——概括——應用”等環節,在知識的形成、發展過程中展開思維,逐步培養學生發現問題、探索問題、解決問題的能力和創造性思維的能力,充分發揮了學生的主體作用,也提高了學生主體的合作意識,達到了設計中所預想的目標。

  然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。

  在以后的教學中,對于一些較簡單的內容,應放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內容等教學因素,都在不斷更新,作為數學教師要更新教學觀念,從學生的全面發展來設計課堂教學,關注學生個性和潛能的發展,使教學過程更加切合《課程標準》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。

函數數學教案11

  【學習目標】

  1、從圖像平移和描點法兩個角度了解余弦函數的圖像畫法;

  2、類比學習正弦函數的圖像方法理解五點法畫函數 = csx,x∈[0,2π]的簡圖;

  3、會利用余弦函數的圖像研究其定義域、值域、周期性、最大(小)值、單調性、奇偶性、圖像的對稱性;

  【學習重點】

  五點法畫余弦函數圖象和余弦函數的性質

  【學習難點】

  余弦函數的性質性質的應用

  【思想方法】

  能從圖形觀察、分析得出結論,體會數形結合的思想方法

  【學習過程】

  一、預習自學(把握基礎)

  (閱讀課本第31~33頁“練習”以上部分的內容,類比正弦函數的圖像和性質的研究方法,理解 = csx,x∈[0,2π]的簡圖并歸納其性質 )

  1、余弦函數 = csx,x 411【導學案】余弦函數的圖像與性質 R,的圖像的畫法有 和 兩種;

  2、描點法畫余弦曲線時的五個關鍵點是:

  411【導學案】余弦函數的圖像與性質

  3、試結合余弦曲線理解歸納出余弦函數的性質:

  二、合作探究(鞏固深化,發展思維)

  例1.用“五點法”畫出下列函數的簡圖.

  (1)=-csx , x 411【導學案】余弦函數的圖像與性質 [0,2π] (2)=3csx, x 411【導學案】余弦函數的圖像與性質 [-π,π]

  例2.畫出函數=csx-1, x 411【導學案】余弦函數的圖像與性質 R的簡圖,根據圖像討論函數的定義域、值域、周期性、最大(小)值、單調性、奇偶性、圖像的對稱性;

  例3、請分別用單位圓和余弦函數圖像求滿足不等式 411【導學案】余弦函數的圖像與性質 的x的集合。

  三、學習體會

  1、知識方法:

  2、我的疑惑:

  四、達標檢測(相信自我,收獲成功)

  1.=1+csx, x 411【導學案】余弦函數的`圖像與性質 [0,2π]的圖像與直線=1的交點個數為

  2、函數=2-csx, x 411【導學案】余弦函數的圖像與性質 [0,2π]的值域為 ,增區間為

  3、= 411【導學案】余弦函數的圖像與性質 的定義域為 ;

  4、=1+csx的奇偶性是

  5、 411【導學案】余弦函數的圖像與性質 的遞減區間是 ;

  6.觀察余弦曲線寫出滿足csx<0的x的集合

函數數學教案12

  【基礎過關】

  1、用一根長10 的鐵絲圍成一個矩形,設其中的一邊長為 ,矩形的面積為 ,則 與 的函數關系式為 .

  2、張大爺要圍成一個矩形花圃.花圃的一邊利用足夠長的墻,另三邊用總長為32米的籬笆恰好圍成.圍成的花圃是如圖所示的矩形ABCD.設AB邊的長為x米.矩形ABCD的面積為S平方米.求S與x之間的函數關系

  3、小敏在某次投籃中,球的運動路線是拋物線 的

  一部分(如圖),若命中籃圈中心,則他與籃底的距離 是( )

  4、小明的父親在相距2米的兩棵樹間拴了一根繩子,給小明做了一個簡易的秋千.拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時,頭部剛好接觸到繩子,則繩子的最低點距地面的距離為 米.

  5、某商場以每臺2500元進口一批彩電,如果每臺售價定為2700元,可賣出400臺,以100元為一個價格單位,若每臺提高一個單位價格,則會少賣出50臺。

  ⑴若設每臺的定價為 (元)賣出這批彩電獲得的利潤為 (元),試寫出 與 的函數關系式;

  ⑵當定價為多少元時可獲得最大利潤?最大利潤是多少?

  6、王強在一次高爾夫球的練習中,在某處擊球,其飛行路線滿足拋物線 ,

  其中 (m)是球的飛行高度, (m)是球飛出的`水平距離,結果球離球洞的水平距離還有2m.

  (1)請寫出拋物線的開口方向、頂點坐標、對稱軸.(2)請求出球飛行的最大水平距離.

  (3)若王強再一次從此處擊球,要想讓球飛行的最大高度不變且球剛好進洞,則球飛行路線應滿足怎樣的拋物線,求出其解析式.

  比例線段

  1.相似形:在數學上,具有相同形狀的圖形稱為相似形

  2.比例線段:在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段

  3. 比例的性質

  (1)基本性質: , a∶b=b∶c b2=ac

  (2)比例中項:若 的比例中項.

  比例尺 = (做題之前注意先統一單位)

  以上就是初三數學寒假作業之求二次函數的應用的全部內容,希望你做完作業后可以對書本知識有新的體會,愿您學習愉快。

函數數學教案13

  【學習引導】

  一、自主學習

  1. 閱讀課本 P32P33

  2. 回答問題

  (1)課本內容分成幾個層次?每個層次的中心內容是什么?

  (2)層次間有什么聯系?

  (3)什么是映射?什么是一一映射原像和像分別指什么?

  (4)函數和映射有什么區別和聯系?

  3. 完成P33練習.

  4. 小結.

  二、方法指導

  本節通過簡單的對應圖示了解一一映射的概念,同學們在學習應該認識到事物間是有聯系的,對應、映射是一種聯系方式. 于此同時同學們的觀察能力、判斷能力、論述能力都得應該到相應的提高.

  【思考引導】

  一、 提問題

  1.函數有哪幾要素?

  2.函數是一種特殊的映射,特殊在哪里?

  二、變題目

  1.在M到N的映射中,下列說法正確的是 ( )

  A.M中有兩個不同的元素對應的象必不相同

  B.N中有兩個不同的元素的原象可能相同

  C.N中的每一個元素都有原象

  D.N中的某一個元素的原象可能不只一個

  2. 設A,B是兩個集合,并有下列條件:

  ①集合A中不同元素在集合B中有不同的像;②集合A,B是非空的數集;③集合B中的每一個元素在A中都有原像;④集合A中任何一個元素在集合B中都有唯一的像. 使對應 成為從定義域A到值域B上的函數的條件是( ).

  A.①②③ B.①②④ C.①③④ D.②③④

  3. 集合A,B是平面直角坐標系中的兩個點集,給定從A到B的映射

  : ( , ) ( + , ),則(5,2)的原像是 .

  4.已知A=B=R, A, B,: = +b,若1, 8的原像相應是3和10,則5在下的像是 .

  【總結引導】

  1. 在理解映射的.概念時,應抓住集合A中的任何一個元素在集合B中都有惟一的元素和它對應,或者說A中的每個元素在B中都有惟一的象;

  在理解一一映射的概念時,應抓住三點:①A到B是映射,②A中每個不同元素在B中有不同的象,③B中的每一個元素在A中都有原象;或者抓住兩點:①A到B是映射,②B到A也是映射.

  2. 函數的實質就是一一對應,一一映射不等同于一一對應.

  3.映射必須滿足的條件是:(1) ;(2) ; (3) .

函數數學教案14

  教學目標

  1.理解函數的概念,了解函數的三種表示法,會求函數的定義域.

  (1)了解函數是特殊的映射,是非空數集a到非空數集b的映射.能理解函數是由定義域,值域,對應法則三要素構成的整體.

  (2)能正確認識和使用函數的三種表示法:解析法,列表法,和圖象法.了解每種方法的優點.

  (3)能正確使用“區間”及相關符號,能正確求解各類函數的定義域.

  2.通過函數概念的學習,使學生在符號表示,運算等方面的能力有所提高.

  (1)對函數記號有正確的理解,準確把握其含義,了解(為常數)與的區別與聯系;

  (2)在求函數定義域中注意運算的合理性與簡潔性.

  3.通過函數定義由變量觀點向映射觀點的過渡,是學生能從發展的角度看待數學的學習.

  教學建議

  1.教材分析

  (1)知識結構

  (2)重點難點分析

  本小節的重點是在映射的基礎上理解函數的概念.,主要包括對函數的定義,表示法,三要素的作用的理解與認識.教學難點是函數的定義和函數符號的認識與使用.

  ①由于學生在初中已學習了函數的變量觀點下的定義,并具體研究了幾類最簡單的函數,對函數并不陌生,所以在高中重新定義函數時,重要的`是讓學生認識到它的優越性,它從根本上揭示了函數的本質,由定義域,值域,對應法則三要素構成的整體,讓學生能主動將函數與函數解析式區分開來.對這一點的認識對于后面函數的性質的研究都有很大的幫助.

  ②在本節中首次引入了抽象的函數符號,學生往往只接受具體的函數解析式,而不能接受,所以應讓學生從符號的含義認識開始,在符號中,在法則下對應,不是與的乘積,符號本身就是三要素的體現.由于所代表的對應法則不一定能用解析式表示,故函數表示的方法除了解析法以外,還有列表法和圖象法.此外本身還指明了誰是誰的函數,有利于我們分清函數解析式中的常量與變量.如,它應表示以為自變量的二次函數,而如果寫成,則我們就不能準確了解誰是變量,誰是常量,當為變量時,它就不代表二次函數.

  2.教法建議

  (1)高中對函數內容的學習是初中函數內容的深化和延伸.深化首先體現在函數的定義更具一般性.故教學中可以讓學生舉出自己熟悉的函數例子,并用變量觀點加以解釋,教師再給出如:是不是函數的問題,用變量定義解釋顯得很勉強,而如果從集合與映射的觀點來解釋就十分自然,所以有重新認識函數的必要.

  (2)對函數是三要素構成的整體的認識,一方面可以通過對符號的了解與使用來強化,另一方面也可通過判斷兩個函數是否相同來配合.在這類題目中,可以進一步體現出三要素整體的作用.

  (3)關于對分段函數的認識,首先它的出現是一種需要,可以給出一些實際的例子來說明這一點,對自變量不同取值,用不同的解析式表示同一個函數關系,所以是一個函數而不是幾個函數,其次還可以舉一些數學的例子如這樣的函數,若利用絕對值的定義它就可以寫成,這就是一個分段函數,從這個題中也可以看出分段函數是一個函數.

函數數學教案15

  一、學生起點分析

  在七年級上期學習了用字母表示數,體會了字母表示數的意義,學會了探索具體事物之間的關系和變化的規律,并用符號進行了表示;在七年級下期又學習了“變量之間的關系”,使學生在具體的情境中,體會了變量之間的相依關系的普遍性,感受了學習變量之間的關系的必要性和重要性,并且積累了一定的研究變量之間關系的一些方法和初步經驗,為學習本章的函數知識奠定了一定的基礎。

  二、教學任務分析

  《函數》是義務教育課程標準北師大版實驗教科書八年級(上)第四章《一次函數》第一節的內容。教材中的函數是從具體實際問題的數量關系和變化規律中抽象出來的,主要是通過學生探索實際問題中存在的大量的變量之間關系,進而抽象出函數的概念。與原傳統教材相比,新教材更注重感性材料,讓學生分析了大量的問題,感受到在實際問題中存在兩個變量,而且這兩個變量之間存在一定的關系,它們的表示方式是多樣地,如可以通過列表的方法表示,可以通過畫圖像的方法表示,還可以通過列解析式的方法表示,但都有著共性:其中一個變量依賴于另一個變量。

  本節內容是在七年級知識的基礎上,繼續通過對變量間的關系的考察,讓學生初步體會函數的概念,為后續學習打下基礎。同時,函數的學習可以使學生體會到數形結合的思想方法,感受事物是相互聯系和規律的變化。一次本節課教學目標定位為:

  1、初步掌握函數概念,能判斷兩個變量間的關系是否可以看成函數;

  2、根據兩個變量之間的關系式,給定其中一個量,相應的會求出另一個量的值;

  3、了解函數的三種表示方法。

  4、通過函數概念的學習,初步形成學生利用函數觀點認識現實世界的意識和能力;

  5、在函數概念形成的過程中,培養學生聯系實際、善于觀察、樂于探索和勤于思考的精神

  對學生來講本節課的難點在于對函數概念的.理解;

  四、教學準備

  教具:教材,課件,電腦

  學具:教材,筆,練習本

  五、教學過程設計

  本節課設計了六個教學環節:第一環節:創設情境、導入新課;第二環節:展現背景,提供概念抽象的素材;第三環節:概念的抽象;第四環節:概念辨析與鞏固;第五環節:課時小結;第六環節:布置作業

  第一環節:創設情境、導入新課

  內容:

  展示一些與學生實際生活有關的圖片,如心電圖片,天氣隨時間的變化圖片,拋擲鉛球球形成的軌跡,k線圖等,提請學生思考問題。

  意圖:

  承接上一學期變量關系的學習,讓學生感受到變量之間關系的是通過多種形式表現出來的,感受研究函數的必要性。

  效果:

  生活實例,激發了學生的研究熱情,起到很好的導入效果。

  第二環節:展現背景,提供概念抽象的素材

  內容:

  問題1、你去過游樂園嗎?你坐過摩天輪嗎?你能描述一下坐摩天輪的感覺嗎?

  當人坐在摩天輪上時,人的高度隨時間在變化,那么變化有規律嗎?

  摩天輪上一點的高度h與旋轉時間t之間有一定的關系,右圖就反映了時間t(分)與摩天輪上一點的高度h(米)之間的關系。你能從上圖觀察出,有幾個變化的量嗎?當t分別取3,6,10時,相應的h是多少?給定一個t值,你都能找到相應的h值嗎?

  問題2、瓶子或罐頭盒等圓柱形的物體,常常如下圖這樣堆放。隨著層數的增加,物體的總數是如何變化的?

  問題3、一定質量的氣體在體積不變時,假若溫度降低到—273℃,則氣體的壓強為零。因此,物理學把—273℃作為熱力學溫度的零度。熱力學溫度T(K)與攝氏溫度t(℃)之間有如下數量關系:T=t+273,T≥0。

  (1)當t分別等于—43,—27,0,18時,相應的熱力學溫度T是多少?

  (2)給定一個大于—273 ℃的t值,你能求出相應的T值嗎?

  意圖:

  通過上面三個問題的展示,使學生們初步感受到:現實生活中存在大量的變量間的關系,并且一個變量是隨著另一個變量的變化而變化的;變量之間的關系表示方式是多樣的(圖象、列表和解析式等)。

  效果:

  通過圖片展示和三個問題的探究,使學生感受生活中的確存在大量的兩個變量之間的關系,并且這兩個變量之間的關系可以通過三種不同的方式表現,初步了解三種方式表示兩個變量之間關系的各自特點。

  第三環節:概念的抽象

  內容:

  1、引導學生思考以上三個問題的共同點,進而揭示出函數的概念:

  在上面的問題中,都有兩個變量,給定其中一個變量(自變量)的值,相應的就確定了另一個變量(因變量)的值。

  4、1函數:同步檢測

  1、張爺爺晚飯以后外出散步,碰到老鄰居,交談了一會兒,返回途中在讀報欄前看了一會兒報,如圖是據此情境畫出的圖象,請你回答下面的問題:

  (1)張爺爺是在什么地方碰到老鄰居的,交談了多長時間?

  (2)讀報欄大約離家多遠?

  (3)圖中反映了哪些變量之間的關系?其中哪個是自變量?哪個是因變量?

【函數數學教案】相關文章:

if函數的使用方法08-30

Excel表格函數的使用技巧07-22

函數求極值的方法總結04-27

函數奇偶性教案02-15

證明函數單調性的方法總結范文07-28

函數教學教案設計(通用9篇)10-26

一次函數的圖象教案11-23

《一次函數》教學教案(通用11篇)06-24

一次函數的圖象教案(精選14篇)04-12

主站蜘蛛池模板: 国产成人av综合色| 免费一区二区三区成人免费视频| 丰满少妇被粗大的猛烈进出视频| 人人妻人人澡人人爽精品欧美| 亚洲av成人一区二区三区观看| 亚洲制服另类无码专区| 国产精品爽黄69天堂a| 99re66在线观看精品免费| 少妇高潮尖叫黑人激情在线| 人人妻人人爽人人做夜欢视频九色| 亚洲国产精品成人天堂| 国产精品高清一区二区不卡片| 亚洲综合在线一区二区三区| 日本视频高清一区二区三区| 欧美丰满大黑帍在线播放| 国产精品亚洲综合一区在线观看| 国产亚洲欧美另类一区二区| 亚洲国产精品无码专区成人| 亚洲最新版av无码中文字幕| 无码成人片在线播放| 乱人伦人妻中文字幕无码| 欧美大屁股xxxx高潮喷水| 好男人在线社区www在线观看视频| 日韩加勒比无码人妻系列| 日韩av高清在线看片| 国产免费极品av吧在线观看| 99久久综合狠狠综合久久| 无码丰满人妻熟妇区| 在线观看人成视频免费| 国产在线精品一区二区高清不卡| 欧美乱码卡一卡二卡四卡免费| 永久免费看一区二区看片| 国产精品久久久久9999无码| 97人洗澡人人澡人人爽人人模| 久久中文字幕人妻丝袜系列| 亚洲国产成人精品无码区二本| 精品无码一区二区三区| 草裙社区精品视频播放| 最新国内精品自在自线视频| 人妻丰满熟妇av无码区app| 午夜家庭影院|